
developer.skatelescope.org
Documentation

Release 0.1.0-beta

Marco Bartolini

Apr 24, 2020

Home

1 Scope 3

2 SKA developer community 5

3 Development tools 43

4 Development practices followed at SKA 55

5 Development guidelines 163

6 Projects 173

7 Developer Services 191

8 Share Your Knowledge 193

9 Commitment to opensource 195

10 Follow Us 197

i

ii

developer.skatelescope.org Documentation, Release 0.1.0-beta

Welcome to the Square Kilometre Array software documentation portal. Whether you are a developer involved in SKA
or you are simply one of our many users, all of our software processes and projects are documented in this portal.

Home 1

http://www.skatelescope.org

developer.skatelescope.org Documentation, Release 0.1.0-beta

2 Home

CHAPTER 1

Scope

This documentation applies to the bridging phase of the SKA project, further updates and scope changes will be
published on this website. Part of the bridging phase goals will be to consolidate and enrich this portal with more
detailed information. It is thus anticipated that in this phase the change rate of the documentation will be very frequent.

3

developer.skatelescope.org Documentation, Release 0.1.0-beta

4 Chapter 1. Scope

CHAPTER 2

SKA developer community

SKA software development is managed in an open and transparent way.

2.1 SKA Code of Conduct

SKA Organisation (SKAO) is committed to the highest standards of business ethics and as such expects everyone
involved in SKAO-related business to uphold the standards and expected professional behavior set out in SKA Code
of Ethics page .

The code of ethics applies to every SKA collaborators and it is the reference guide defining the culture of this online
community of contributors.

• Download the SKA Code of Ethics

2.2 Howto join the SKA developer community

Todo:

• to be defined as soon as we have onboarding procedures for new members, and specific training events.

2.3 Agile teams and responsibilities

SKA software development is organized in agile teams.

5

https://www.skatelescope.org/ska-organisation-code-of-conduct-for-meetings/
https://www.skatelescope.org/ska-organisation-code-of-conduct-for-meetings/
http://www.skatelescope.org/wp-content/uploads/2017/12/SKAO_Code_of_Ethics_Nov17.pdf

developer.skatelescope.org Documentation, Release 0.1.0-beta

2.3.1 Development team

See https://www.scaledagileframework.com/dev-team/

Todo:

• should we expand this section? The whole portal is dedicated to describe DEV practices and tools . . .

2.3.2 Scrum Master

The Scrum Master of each team is responsible for the process the team follows. A generic description of this role can
be found on the SAFe website. The SKA Scrum Masters are also responsible for:

• Meet the team, make sure they know each other and find a nice way to present interests, skills and get to know
each other. Lead the team to find a name they like.

• Make sure all team members can access SKA confluence and jira.

• Make sure all team members have access to SKA video conferencing tools.

• Create a team page on the SKA confluence portal describing who belongs to the team and his/her role. This
page will serve as an entry point for team related information.

• Use the Team Jira board to plan and report team activity happening in the development sprints.

• Run sprints planning/retrospective/reviews cycles and daily stand-up meetings with the team, making sure the
team follows an improvement process.

• Work with the team in order to understand the SKA Definition of Done and development practices.

• Setup and maintain a slack channel for the team according to the slack usage guidelines.

• Setup and maintain a github team including all team members under the SKA organization github account.

• Manage permissions on github repositories the team is working on.

• Maintain consistency between the team composition on the various tools and platforms, and make sure that team
members are using those in an appropriate way.

• Take part in the Scrum Of Scrums meeting, coordinating his/her activity with all the SMs participating in the
development effort.

2.3.3 Product Owner

See https://www.scaledagileframework.com/product-owner/

Todo:

• Define specifics activities for SKA POs.

2.4 SKA developer community decision making process

Todo:

6 Chapter 2. SKA developer community

https://www.scaledagileframework.com/dev-team/
https://www.scaledagileframework.com/scrum-master/
https://confluence.skatelescope.org/display/SE/Bridging+organisation
https://github.com/ska-telescope
https://www.scaledagileframework.com/product-owner/

developer.skatelescope.org Documentation, Release 0.1.0-beta

• this is still TBD with the program management team.

• SKA Code of Conduct

• Howto join the SKA developer community

• Agile teams and responsibilities

• SKA developer community decision making process

Todo:

• SAFe process implementation

• Community forum

2.5 Working with git

2.5.1 About git

Git is the version control system of choice used by SKA. Describing the basics of how to use git is out of the scope of
this developer portal, but it is fundamental that all developers contributing to SKA get familiar with git and how to use
it. These online resources are a good starting point:

• Learn git interactively: https://learngitbranching.js.org/

• Official git reference at: https://git-scm.com/docs

• Interactive Git cheatsheet: http://www.ndpsoftware.com/git-cheatsheet.html

2.5.2 Committing code

When working on a development project, it is important to stick to these simple commit rules:

• Commit often.

• Have the Jira story ID at the beginning of your commit messages.

• Git logs shall be human readable in sequence, describing the development activity.

• Use imperative forms in the commit message.

2.5.3 Configure git

Set GIT institutional email address

Setup git so that it uses your institutional email account to sign commits, this can be done in your global git configu-
ration:

$ git config --global user.email "your@institutional.email"
$ git config --global user.email
your@institutional.email

Or you can configure the mail address on a project basis.

2.5. Working with git 7

https://learngitbranching.js.org/
https://git-scm.com/docs
http://www.ndpsoftware.com/git-cheatsheet.html

developer.skatelescope.org Documentation, Release 0.1.0-beta

$ cd your/git/project
$ git config user.email "your@institutional.email"
$ git config user.email
your@institutional.email

2.5.4 Branching policy

Albeit the SKA organisation does not want to be prescriptive about git workflows, two concepts are important to the
SKA way of using GIT:

1. The master branch of a repository shall always be stable.

2. Branches shall be short lived, merging into master as often as possible.

Stable means that the master branch shall always compile and build correctly, and executing automated tests with
success. Every time a master branch results in a condition of instability, reverting to a condition of stability shall have
the precedence over any other activity on the repository.

Master based development

We suggest teams to start developing adopting a master-based development approach, where each developer commits
code into the master branch at least daily. While this practice may seem counter intuitive, there is good evidence
in literature that it leads to a better performing system. Branches are reduced to a minimum in this model, and the
discipline of daily commits into master greatly enhances the communication within the team and the modularity of the
software system under construction. The workflow follows these steps:

• As a developer starts working on a story, all his commits related to the story shall contain the story Jira ID in
the message. i.e. AT-51 method stubs

• The developer continues working on his local master branch with multiple commits on the same story.

• Each day the local master pulls the remote and incorporates changes from others.

• The local master is tested successfully.

• The local commits are pushed onto the remote master.

• The CI pipeline is correctly executed on the remote master by the CI server.

Implemented correctly, this practice leads to having an integrated, tested, working system at the end of each develop-
ment interval, that can be shipped directly from our master branch with the click of a button.

Story based branching

We support adopting a story-based branching model, often referred to as feature branching. This workflow effec-
tively leverages pull requests enabling code reviews and continuous branch testing, but it is important to stress the
importance of having short lived branches. It is easy to abuse this policy and have long living branches resulting in
painful merge activities and dead or stale development lines. Bearing in mind that a story by definition is some piece
of work a developer should conclude in the time of a sprint, the workflow would follow these steps:

• As a developer starts working from master on a new story, she creates a new branch.

• The new branch shall be named as the story, i.e. story-AT1-26.

8 Chapter 2. SKA developer community

developer.skatelescope.org Documentation, Release 0.1.0-beta

$ git branch

* master
$ git checkout -b my-story-id
$ git branch
master

* my-story-id

• All the commit messages contributing to the development of the story begin with the story ID, i.e. AT1-26 basic
testing.

• The developer makes sure that all tests execute correctly on her local story branch.

• When the story is ready for acceptance the developer pushes the story branch upstream.

$ git push -u origin my-story-id

• A pull request is created on the DVCS server to merge the story branch into the master branch.

• Reviewers interact with comments on the pull request until all conflicts are resolved and reviewers accept the
pull request.

• Pull request is merged into Master.

• The CI pipeline is executed successfully on the master branch by the CI server.

Whenever a team deviates from one of the recommended policy, it is important that the team captures its decision and
publicly describe its policy, discussing it with the rest of the community.

See a more detailed description of this workflow at https://guides.github.com/introduction/flow/

2.6 Working with GitLab

2.6.1 Use institutional email

Create a gitlab account using your institutional email address at https://gitlab.com/users/sign_in. If you already have
an account on GitLab, you shall have your institutional email added to your profile: click on your user icon on the top
right corner and select Settings->Emails->Add email address .

2.6.2 Setup SSH key

Associate your ssh-key to your user at Settings->SSH keys.

2.6.3 SKA Organization

SKA Organization can be found on GitLab at https://gitlab.com/ska-telescope. Send a request to the System Team on
Slack (team-system-support channel) to link your account to the SKA Gitlab group.

2.6. Working with GitLab 9

https://guides.github.com/introduction/flow/
https://gitlab.com/users/sign_in
https://gitlab.com/ska-telescope

developer.skatelescope.org Documentation, Release 0.1.0-beta

2.7 Working with Github (Deprecated)

2.7.1 Use institutional email

Create a github account using your institutional email address at https://github.com/join?source=login . If you already
have an account on github, you shall have your institutional email added to your profile: click on your user icon on the
top right corner and select Settings->Emails->Add email address .

2.7.2 Setup SSH key

Associate your ssh-key to your user at Settings->SSH and GPG keys .

2.7.3 Join SKA Organisation

SKA Organisation can be found on github at https://github.com/ska-telescope/ , The scrum master of your team will
make sure you can access it.

2.7.4 Desktop client

Less experienced developers can use the github desktop client at: https://desktop.github.com/ This definitely lowers
the barrier of using git for a number of different users.

2.8 Transition your GitHub Repo to GitLab

The SKA Software team decided to move from GitHub to the GitLab platform as the main git-repository manager for
its CI/CD tools. This page is a simple walk-through of all the steps you have to do for this switch.

2.8.1 Create GitLab Account

The fist step is the more obvious and the simplest one. You just have to go to https://gitlab.com/users/sign_in in your
favorite browser and create a new account. For that, you have two main options:

1. Create an account with an email of your choice;

2. Sign in with GitHub Credentials to automatically have the same account information on the new profile. (Rec-
ommended)

2.8.2 Developers

In the local development you must update the git files of each project to the new GitLab repository. Therefore, you
only have to write this in the terminal inside the project directory:

$ git remote set-url origin https://gitlab.com/ska-telescope/your-project-name.git

To check if everything went smoothly, type the command below and check if the both links are the same as the GitLab
repo link that you just typed.

10 Chapter 2. SKA developer community

https://github.com/join?source=login
https://github.com/ska-telescope/
https://desktop.github.com/
https://gitlab.com/users/sign_in

developer.skatelescope.org Documentation, Release 0.1.0-beta

$ git remote -v

And it’s done! You can now do everything that you are authorized to do on this GitLab repository.

2.8.3 Project Owners

Create GitLab Project

For the moment the only users on our GitLab that can create a repository, are the System Team members - please ask
on the #team-system-support Slack channel. For more information on creating new projects, go to this page.

Mirror Repository

It was generally accepted that we still use Github to show our open-source projects because we have more visibility
there. So, to do that we have to setup a mirroring process from Gitlab to Github.

The first step is to create a personal access token on Github. For this, just open their settings page and select “Developer
Settings” option from de side bar menu (direct link: https://github.com/settings/tokens). From there click on ‘Personal
Access Tokens”, press ‘Generate new token’ and fill the token’s name and check the ‘public_repo’ option. Just like
the picture below.

Fig. 1: Get GitHub Personal Token.

After you generate the token, go to your project settings page on Gitlab, click on ‘Repository’ section and fill the text
boxes in the ‘Mirroring repositories’ like this:

• Git repository URL: https://<your_github_username>@github.com/ska-telescope/<your_github_project>.git.

• Mirror direction: Push

• Authentication method: Password

• Password: Github_Password

Finally, with the mirroring process finalized and with no errors, you can start pushing and use the available dashboard
to check if everything is working properly.

2.8. Transition your GitHub Repo to GitLab 11

https://skasoftware.slack.com/messages/CEMF9HXUZ
https://github.com/settings/tokens
https:/

developer.skatelescope.org Documentation, Release 0.1.0-beta

Fig. 2: The GitLab mirror setup.

Fig. 3: GitLab Mirror Dashboard.

12 Chapter 2. SKA developer community

developer.skatelescope.org Documentation, Release 0.1.0-beta

Read-Only GitHub Project

Differences Between GitHub and GitLab

Since both GitHub and GitLab are built on top of Git, there are very few differences between the two systems. The first
obvious difference is that GitLab has merge requests instead of pull requests. The function is pretty much identical,
and the UI is pretty similar. GitLab provide an extensive tutorial on merge requests.

The other major difference is that GitLab provides automatic Continuous Integration Pipelines. If you have already
used Jenkins, you’ll find it pretty similar. There is an SKA guide to Continuous Integration.

2.9 Continuous Integration

2.9.1 Configuring a CI pipeline

To enable the Gitlab automation, it is needed to insert a configuration file that must be placed in the root of the
repository and called “.gitlab-ci.yml”. It mainly contains definitions of how your project should be built. An example
of it can be found within the project “ska-python-skeleton” available here. Once the file is in the root directory, it
is possible to run the CI pipeline manually (creating a pipeline) or with a commit in github as soon as the mirroring
finishes. The following pipeline was created manually pressing the button “Run pipeline” on a specific branch (i.e.
master).

2.9.2 Automated Collection of CI health metrics as part of the CI pipeline

As part of the CI/CD process all teams are expected to collect and consolidate the required code health metrics. Namely
unit tests, linting (static code analysis) and coverage.

Part of the CI/CD functionality is to add a quick glance of those metrics to each repository in the form of badges.
These badges will always show the status of the default branch in each repository.

Teams have the option to use the automatic parsing of their CI and code health metrics and have the badges created
automatically as long as the output from their code health reports follows the requirements described bellow. As an

2.9. Continuous Integration 13

https://docs.gitlab.com/ee/user/project/merge_requests/
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/yaml/README.html
https://github.com/ska-telescope/ska-python-skeleton/blob/master/.gitlab-ci.yml

developer.skatelescope.org Documentation, Release 0.1.0-beta

alternative the teams can instead create the ci-metrics.json file themselves according to what is described in
Manual Metrics.

These metrics reports must pass the following requirements:

1. These files must not be part of the repository, but be created under their respective steps (test, linting) in
the CI pipeline.

2. Unit Tests report must be a JUnit XML file residing under ./build/reports/unit-tests.xml

3. Linting report must be a JUnit XML file residing under ./build/reports/linting.xml

4. Coverage report must be a XML file in the standard used by Coverage.py residing under ./build/reports/
code-coverage.xml

5. The XML format expected for the coverage is the standard XML output from Coverage.py for Python or from
a similar tool like Cobertura for Javascript with the line-rate attribute specifying the coverage. See the
example code bellow.

<?xml version="1.0" encoding="UTF-8"?>
<coverage branch-rate="0" branches-covered="0" branches-valid="0" complexity="0" line-
→˓rate="0.6861" lines-covered="765" lines-valid="1115" timestamp="1574079100055"
→˓version="4.5.4">

In order to automate the process as much as possible for the teams, the ci-metrics-utilities repository was created and
it will automate the all metrics collection, and badge creation as long as the 5 points above are observed.

In order to use this automation, the following code must be added at the end of .gitlab-ci.yml

create ci metrics:
stage: .post
image: nexus.engageska-portugal.pt/ska-docker/ska-python-buildenv:latest
when: always
tags:
- docker-executor

script:
Gitlab CI badges creation: START
- apt-get -y update
- apt-get install -y curl --no-install-recommends
- curl -s https://gitlab.com/ska-telescope/ci-metrics-utilities/raw/master/

→˓scripts/ci-badges-func.sh | sh
Gitlab CI badges creation: END

artifacts:
paths:

- ./build

2.9.3 Manual Collection of CI health metrics as part of the CI pipeline

The teams that prefer to create their own ci-metrics.json file instead of using the provided automation, can do
so. They are still expected to observe all the points described in Automated Metrics.

The ci-metrics.json file is expect to be created automatically as part of the CI pipeline by the teams by collecting
the relevant information from the unit tests, coverage, linting and build status. An important point to notice, is that
ci-metrics.json shouldn’t exist as part of the repository, but, be created specifically as part of the CI
pipeline. The file must be created and properly populated before the start of the marked stage: .post step in
the CI pipeline (.gitlab-ci.yml file).

The metrics should be collected under the following structure:

• commit-sha (string): sha tag for the git commit

14 Chapter 2. SKA developer community

https://pypi.org/project/coverage/
https://github.com/cobertura/cobertura

developer.skatelescope.org Documentation, Release 0.1.0-beta

• build-status: top level placeholder for the build process status

– last: placeholder about the last build process

* timestamp (float): the Unix timestamp with the date and time of the last build status

• coverage: placeholder about the unit test coverage

– percentage (float): the coverage percentage of the unit tests

• tests: placeholder about the unit tests

– errors (int): number of test errors

– failures (int): number of test failures - this denotes a serious error in the code that broke the testing process

– total (int): total number of tests

• lint: placeholder about the linting (static code analysis)

– errors (int): number of linting errors

– failures (int): number of linting failures - this denotes a serious error in the code that broke the linting
process

– total (int): total number of linting tests

ci-metrics.json example:

{
"commit-sha": "cd07bea4bc8226b186dd02831424264ab0e4f822",
"build-status": {

"last": {
"timestamp": 1568202193.0

}
},
"coverage": {

"percentage": 60.00
},

"tests": {
"errors": 0,
"failures": 3,
"total": 170

},
"lint": {

"errors": 4,
"failures": 0,
"total": 7

}
}

2.9.4 Using a specific executor

The pipeline by default will run with a shared runner made available from GitLab. It is also possible to assign specific
ska runner to the project (by adding the tags). To do that the option must be enabled:

2.9. Continuous Integration 15

https://docs.gitlab.com/ee/ci/yaml/README.html#tags

developer.skatelescope.org Documentation, Release 0.1.0-beta

The EngageSKA cluster located at the Datacenter of Institute of Telecommunication (IT) in Aveiro provides some
virtual machines available adding the tag “engageska” or “docker-executor” as shown here.

2.9.5 CI pipeline stage descriptions

Caution: This section is a work in progress

The CI/CD pipeline will ensure that software projects are packaged, tested and released in a consistent and predictable
manner. SKA Pipelines are viewable and executable at https://gitlab.com/ska-telescope

General Notes

• Every commit could potentially trigger a pipeline build. There may be different rules applied to determine which
stages are executed in the pipeline based on factors like the branch name.

– E.g Every commit in a feature branch may trigger the “Lint” stage, but not a slow test suite.

• When doing a release with a git tag, the full pipeline will be run.

• Every pipeline job is associated with its git commit (including tag commits).

• Try and have the stages complete as fast as possible.

16 Chapter 2. SKA developer community

https://github.com/ska-telescope/ska-python-skeleton/blob/master/.gitlab-ci.yml
https://gitlab.com/ska-telescope

developer.skatelescope.org Documentation, Release 0.1.0-beta

– In some cases it may be possible to parallelize jobs. For example, unit tests and static analysis could be
run in parallel.

• All projects must include all the stages listed below.

• Project dependencies must be stored in, and made available from the SKA software repository.

• All tests must pass on the “master” branch and should be kept stable.

Stages

Build

The build stage packages/compiles the software project into distributable units of software. The project will be checked
out at the git commit hash. This specific version of the code must then be built. Failing the build stage will stop the
further steps from being executed. Where possible Semantic Versioning should be used. To create a release a git tag
should be used. See Release Procedure.

Input Git commit hash

Output A distributable unit of software. E.g .deb .whl .jar or docker image. These must be stored as part of the
artifacts and will then be available to subsequent jobs. One could also store metadata together with the artefact,
such as a hash of the binary artefact. This should be provided by our artefact registry.

Linting

The static analysis stage does static code analysis on the source code such as Linting.

Input None

Output Quality analysis results in JUnit format.

Test

The test stage must install/make use of the packages created during the build stage and execute tests on the installed
software. Tests should be grouped into Fast / Medium / Slow / Very Slow categories.

Input The output from the Build stage. E.g .deb or .whl or docker image. Input could also consist of test data or
environment.

Output

• The results of the tests in JUnit format. These need to be added to the artifacts. See Gitlab Test Reports.

• Coverage metrics in JUnit format.

Test types

Todo:

• Further define components to be mocked or not

• Further define smoke/deployments tests

2.9. Continuous Integration 17

http://developer.skatelescope.org/en/latest/development/python_package_release_procedure.html
https://docs.gitlab.com/ee/ci/junit_test_reports.html

developer.skatelescope.org Documentation, Release 0.1.0-beta

Unit tests The smallest possible units/components are tested in very fast tests. Each test should complete in millisec-
onds.

Component tests Individual components are tested.

Integration/Interface tests Components are no longer being mocked, but the interactions between them are tested.
If a component is a docker image, the image itself should be verified along with its expected functionality.

Deployment tests Tests that software can be deployed as expected and once deployed, that it behaves as expected.

Configuration tests Multiple combinations of software and hardware are tested.

System tests The complete solution, integrated hardware and software is tested. There tests ensure that the system
requirements are met.

Publish

Once the build and test stages have completed successfully the output from the build stage is uploaded to the SKA
software repository. This stage may only be applicable on git tag commits for full releases in certain projects.

Input The output from the Build stage. .deb or .whl for example. This could also include docker images.

Output The packages are uploaded to the SKA software repository.

Pages

This is a gitlab stage publishes the results from the stages to Gitlab

Input The JUnit files generated in each pipeline stage.

Output The generated HTML containing the pipeline test results.

Documentation

Currently the documentation is generated by the “readthedocs” online service. The list of SKA projects
available here. The project documentation will be updated and accessible at the following URL
https://developer.skatelescope.org/projects/<PROJECT> E.g lmc-base-classes

Input A docs folder containing the project documentation.

Output The generated HTML containing the latest documentation.

2.9.6 Using environment variables in the CI pipeline to upload to Nexus

There are several environment variables available in the CI pipeline that should be used when uploading Python
packages and Docker images to Nexus. This will make these packages available to the rest of the SKA project.

Python Modules

The Nexus PYPI destination as well as a username and password is avialable. For a reference implementation see the
lmc-base-classes .gitlab-ci.yaml

Note the following:

• The Nexus PYPI_REPOSITORY_URL is where the packages will be uploaded to.

18 Chapter 2. SKA developer community

http://developer.skatelescope.org/en/latest/projects/list.html
https://developer.skatelescope.org/projects/lmc-base-classes
https://github.com/ska-telescope/lmc-base-classes/blob/master/.gitlab-ci.yml
https://nexus.engageska-portugal.pt/repository/pypi/

developer.skatelescope.org Documentation, Release 0.1.0-beta

• twine uses the local environment variables (TWINE_USERNAME, TWINE_PASSWORD) to authenticate
the upload, therefore they are defined in the variables section.

publish to nexus:
stage: publish
tags:
- docker-executor

variables:
TWINE_USERNAME: $TWINE_USERNAME
TWINE_PASSWORD: $TWINE_PASSWORD

script:
check metadata requirements
- scripts/validate-metadata.sh
- pip install twine
- twine upload --repository-url $PYPI_REPOSITORY_URL dist/*

only:
variables:

- $CI_COMMIT_MESSAGE =~ /^.+$/ # Confirm tag message exists
- $CI_COMMIT_TAG =~ /^((([0-9]+)\.([0-9]+)\.([0-9]+)(?:-([0-9a-zA-Z-]+(?:\.[0-

→˓9a-zA-Z-]+)*))?)(?:\+([0-9a-zA-Z-]+(?:\.[0-9a-zA-Z-]+)*))?)$/ # Confirm semantic
→˓versioning of tag

Docker images

The Nexus Docker registery host and user is available. For a reference implementation see the SKA docker gitlab-
ci.yml

Note the following:

• The DOCKER_REGISTRY_USER corresponds to the folder where the images are uploaded, hence the
$DOCKER_REGISTRY_FOLDER is used.

script:
- cd docker/tango/tango-cpp
- make DOCKER_BUILD_ARGS="--no-cache" DOCKER_REGISTRY_USER=$DOCKER_REGISTRY_FOLDER
→˓DOCKER_REGISTRY_HOST=$DOCKER_REGISTRY_HOST build
- make DOCKER_REGISTRY_USER=$DOCKER_REGISTRY_FOLDER DOCKER_REGISTRY_HOST=$DOCKER_
→˓REGISTRY_HOST push

2.10 CI-Dashboard

The following table is automatically extracted from our gitlab project dashboard page at [https://ska-telescope.gitlab.
io/ska_ci_dashboard/]

Inputs Output
A B A or B
False False False
True False True
False True True
True True True

2.10. CI-Dashboard 19

https://github.com/ska-telescope/ska-docker/blob/master/.gitlab-ci.yml
https://github.com/ska-telescope/ska-docker/blob/master/.gitlab-ci.yml
https://ska-telescope.gitlab.io/ska_ci_dashboard/
https://ska-telescope.gitlab.io/ska_ci_dashboard/

developer.skatelescope.org Documentation, Release 0.1.0-beta

2.11 Tango Development Environment set up

2.11.1 Definition

The Development Environment is the set of processes and software tools used to create software.

Tools include:

• python version 3.7

• TANGO-controls ‘9.3.3’

• Visual Studio Code, PyCharm Community Edition

• ZEROMQ ‘4.3.2’

• OMNIORB ‘4.2.3’

Processes include:

• writing code,

• testing code,

• packaging it.

The main process is a python/c++ developer working with one tango device server writing one or more devices:

1. (optional) Work with pogo and create the device(s) needed;

2. Work with a text editor (such as pycharm or VSCode);

3. The tango framework is running locally (with docker) together with other runtime application (generally other
devices) needed for the specific development so that the developer can test the device(s) just created;

4. In order to test the work done, the developer creates unit tests (with pytest);

5. The developer creates (if needed) a document for non-trivial testing (for instance for integration testing, usability
testing and so on) if the test automation is not possible;

6. The developer creates (if not done before) the docker file in order to ship its work and execute it in a different
environment (GitLab CI infrastructure); note that this step can be deleted if the docker file is already available
for some kind of development (i.e. for python tango devices the docker file can be the same for every project;

7. The developer creates the file ‘.gitlab-ci.yml’ for the GitLab CI integration;

8. The developer tests the project in GitLab.

2.11.2 Prerequisites

• VirtualBox installed

• git

2.11.3 Creating a Development Environment

Download a image of ubuntu 18.04 like the following one:

• https://sourceforge.net/projects/osboxes/files/v/vb/55-U-u/18.04/18.04.2/18042.64.7z/download

Run the box and call the following commands:

20 Chapter 2. SKA developer community

https://sourceforge.net/projects/osboxes/files/v/vb/55-U-u/18.04/18.04.2/18042.64.7z/download

developer.skatelescope.org Documentation, Release 0.1.0-beta

sudo apt -y install git
git clone https://gitlab.com/ska-telescope/ansible-playbooks
cd ansible-playbooks
sudo apt-add-repository --yes --update ppa:ansible/ansible && sudo apt -y install
→˓ansible
ansible-playbook -i hosts deploy_tangoenv.yml --extra-vars "ansible_become_
→˓pass=osboxes.org"
sudo reboot

2.11.4 Start the tango system

In order to start the tango system, just call the following commands:

cd /usr/src/ska-docker/docker-compose
make up
make start tangotest

2.11.5 Other information

Please visit the following github pages for more information:

1. https://gitlab.com/ska-telescope/ansible-playbooks.

2. https://gitlab.com/ska-telescope/ska-docker

2.12 PyCharm

PyCharm is a recommended IDE for developing SKA control system software.

Two versions of PyCharm are available: a free community edition, and a payware professional version. Both editions
can be downloaded from the PyCharm download page.

2.12.1 PyCharm Professional Docker configuration

These instructions show how to configure PyCharm Professional for SKA control system development using the SKA
Docker images. PyCharm can be configured to use the Python interpreter inside a Docker image, which allows:

• development and testing without requiring a local Tango installation;

• the development environment to be identical to the testing and deployment environment, eliminating problems
that occur due to differences in execution environment.

Follow the steps below to configure PyCharm to develop new code and run tests for the tango-example project using
the Docker images for the project.

Prerequisites

Make sure that the following prerequistes are met:

• Docker is installed, as described on the page Docker Docs.

• PyCharm Professional must be installed. PyCharm Community is not sufficient!

2.12. PyCharm 21

https://gitlab.com/ska-telescope/ansible-playbooks
https://gitlab.com/ska-telescope/ska-docker
https://www.jetbrains.com/pycharm/download
https://docs.docker.com/
https://www.jetbrains.com/pycharm/

developer.skatelescope.org Documentation, Release 0.1.0-beta

• You have basic familiarity with PyCharm. If this is the first time you have used PyCharm, follow the First Steps
tutorials so that you know how to use PyCharm to develop, debug, and test a simple Python application using a
local Python interpreter.

Clone the tango-example project

PyCharm allows you to check out (in Git terms clone) an existing repository and create a new project based on the
data you’ve downloaded.

1. From the main menu, choose VCS | Checkout from Version Control | Git, or, if no project is currently opened,
choose Checkout from Version Control | Git on the Welcome screen.

2. In the Clone Repository dialog, specify the URL of the tango-example repository (you can click Test to make
sure that connection to the remote can be established).

3. In the Directory field, specify the path where the folder for your local Git repository will be created into which
the remote repository will be cloned. The dialog should now look similar to this:

4. Click Clone, then click Yes in the subsequent confirmation dialog to create a PyCharm project based on the
sources you have cloned.

Build the application image

With the source code source code checked out, the next step is to build a Docker image for the application. This image
will contain the Python environment which will we will later connect to PyCharm.

Begin a terminal session in the cloned repository directory and build the image:

mypc:tango-example tangodeveloper$ make build
docker build -t nexus.engageska-portugal.pt/tango-example/powersupply:0.1.0-65c0927 .
→˓ -f Dockerfile --build-arg DOCKER_REGISTRY_HOST=nexus.engageska-portugal.pt --build-
→˓arg DOCKER_REGISTRY_USER=tango-example
Sending build context to Docker daemon 450.6kB
Step 1/4 : FROM nexus.engageska-portugal.pt/ska-docker/ska-python-buildenv:latest AS
→˓buildenv
latest: Pulling from ska-docker/ska-python-buildenv
177e7ef0df69: Pull complete
d9178ba39f54: Pull complete
a1c86587108f: Pull complete
072891bac9fb: Pull complete
f7ec90efdf53: Pull complete

(continues on next page)

22 Chapter 2. SKA developer community

https://www.jetbrains.com/help/pycharm/basic-tutorials.html
https://github.com/ska-telescope/tango-example

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

877eee992e82: Pull complete
eb71e945bf43: Pull complete
6b50707e167c: Pull complete
6bb56dff13ba: Pull complete
8c3fe19826ab: Pull complete
4377cf316b50: Pull complete
209febb6128f: Pull complete
41eb9ed8ebf6: Pull complete
Digest: sha256:a909606b3d0d4b01b5102bd0e4f329d7fd175319f81c8706493e75504dd0439e
Status: Downloaded newer image for nexus.engageska-portugal.pt/ska-docker/ska-python-
→˓buildenv:latest
Executing 3 build triggers
---> Running in c98b60355c16

Installing dependencies from Pipfile.lock (48af56)...
Removing intermediate container c98b60355c16
---> 52007c1fb364

Step 2/4 : FROM nexus.engageska-portugal.pt/ska-docker/ska-python-runtime:latest AS
→˓runtime
latest: Pulling from ska-docker/ska-python-runtime
177e7ef0df69: Already exists
d9178ba39f54: Already exists
a1c86587108f: Already exists
072891bac9fb: Already exists
f7ec90efdf53: Already exists
0f3a4ec2943c: Pull complete
Digest: sha256:9adf4810777d14b660b99fbe2d443f8871cc591313c8ac436dacee38de39160e
Status: Downloaded newer image for nexus.engageska-portugal.pt/ska-docker/ska-python-
→˓runtime:latest
Executing 6 build triggers
---> Running in edf8f96df923

Removing intermediate container edf8f96df923
---> Running in 246002732edf

Removing intermediate container 246002732edf
---> 1ac7b8a31b0f

Step 3/4 : RUN ipython profile create
---> Running in 6eccb0302ab8

[ProfileCreate] Generating default config file: '/home/tango/.ipython/profile_default/
→˓ipython_config.py'
Removing intermediate container 6eccb0302ab8
---> d428fd337258

Step 4/4 : CMD ["/venv/bin/python", "/app/powersupply/powersupply.py"]
---> Running in e667e6c25b0b

Removing intermediate container e667e6c25b0b
---> 76e5e0e2e4b9

[Warning] One or more build-args [DOCKER_REGISTRY_HOST DOCKER_REGISTRY_USER] were not
→˓consumed
Successfully built 76e5e0e2e4b9
Successfully tagged nexus.engageska-portugal.pt/tango-example/powersupply:0.1.0-
→˓65c0927
docker tag nexus.engageska-portugal.pt/tango-example/powersupply:0.1.0-65c0927 nexus.
→˓engageska-portugal.pt/tango-example/powersupply:latest
mypc:tango-example tangodeveloper$

The last lines of terminal output displays the name and tags of the resulting images, e.g.,

...
Successfully built 76e5e0e2e4b9

(continues on next page)

2.12. PyCharm 23

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

Successfully tagged nexus.engageska-portugal.pt/tango-example/powersupply:0.1.0-
→˓65c0927
docker tag nexus.engageska-portugal.pt/tango-example/powersupply:0.1.0-65c0927 nexus.
→˓engageska-portugal.pt/tango-example/powersupply:latest

In the example above, the image name is tagged as nexus.engageska-portugal.pt/tango-example/powersupply:0.1.0-
65c0927 and nexus.engageska-portugal.pt/tango-example/powersupply:latest. Take a note of the image tagged as
latest as you will need it when configuring the remote interpreter.

Configure the remote interpreter

Following the official PyCharm documentation, configure Docker as a remote interpreter using the image you just
created. The ‘Add Python Interpreter’ dialog should look similar to this:

As a result, the Python interpreter Preferences dialog should look something like this:

Click ‘OK’ to apply your changes.

Note: It is recommended to use the remote interpreter in the image tagged as :latest rather than the image tagged with

24 Chapter 2. SKA developer community

https://www.jetbrains.com/help/pycharm/using-docker-as-a-remote-interpreter.html#config-docker

developer.skatelescope.org Documentation, Release 0.1.0-beta

a git hash, e.g., :0.1.0-65c0927. The :latest version will always point to the most recent version of the image, whereas
the hash-tagged image will be superceded every time you rebuild.

You can now navigate through the project. As an exercise, open the source code for the PowerSupply class, which
is defined in powersupply/powersupply.py. Notice that the IDE notifications and intellisense / code completion are
now based on information gathered from the remote Docker interpreter. Below an import statement, try typing from
tango import and activate code completion (ctrl+space). Notice how the tango packages installed in the Docker
image are suggested to complete the statement.

Whenever you change the Python environment, for example by adding or removing dependencies in Piplock, after
rebuilding the Docker image you should regenerate the project skeletons to make PyCharm aware of the changes. To
do this, select File | Invalidate Caches / Restart. . . from the main menu.

Running unit tests

The tango-example project illustrates two types of unit test:

1. Self-contained unit tests that execute within the confines of a single Docker container. These tests use the Tango
class DeviceTestContext, which provides a mock connection to a Tango database. In the tango-example project,
these tests are found in tests/test_1_server_in_devicetestcontext.py.

2. Unit tests that exercise a device in a real Tango environment, with connections to a Tango database
and other devices. utilise require a connection. In the tango-example project, these tests are found in
tests/test_2_test_server_using_client.py.

This tutorial illustrates how to run the self-contained unit tests described in 1. The second type of unit tests require a
docker-compose PyCharm configuration, which is not described here.

From the main menu, choose Run | Edit Configurations. . . and click on the ‘+’ button to add a new configuration.
From the menu that appears, select Python tests | pytest to add a new pytest test configuration. The menu selection
looks like this:

2.12. PyCharm 25

developer.skatelescope.org Documentation, Release 0.1.0-beta

26 Chapter 2. SKA developer community

developer.skatelescope.org Documentation, Release 0.1.0-beta

1. Change the Target radio button to ‘Module Name’. Click ‘. . . ’ to select the target, choosing
test_1_server_in_devicetestcontext as the module to be tested.

2. Select ‘Project Default’ as the Python interpreter for this configuration.

Note: If you change the project default interpreter to another configuration - a Docker Compose configuration, for
instance - then you may want to revisit this run/debug configuration and explicitly select the Docker :latest interpreter
rather than use the project default.

The configuration dialog should look like similar to this:

Click ‘OK’ to accept your changes.

From the main menu, choose Run | Run. . . , then from the Run dialog that opens, select the configuration you just
created. The unit tests will execute, with the results displayed in PyCharm’s Run panel. The results will look like this:

2.12. PyCharm 27

developer.skatelescope.org Documentation, Release 0.1.0-beta

Debugging Configuration

Note: The coverage module is not compatible with the PyCharm or Visual Studio Code debugger and must be
disabled before any debugging session. Do so by editing setup.cfg, commenting out the addopts=... line of the
tool:pytest section so that it looks like this:

[tool:pytest]
testpaths = tests
#addopts = --cov=powersupply --json-report --json-report-file=htmlcov/report.
→˓json --cov-report term --cov-report html --cov-report xml --pylint --
→˓pylint-error-types=EF

PyCharm has a debug mode that allows breakpoints to be added to code and the runtime state of the device examined.
Refer to the official PyCharm documentation for comprehensive documentation on how to add breakpoints and run in
debug mode.

The steps in the official documentation can also be used to debug and interact with ah Tango device, using the con-
figuration set up in the previous section as the basis for the debug configuration. However, full breakpoint function-
ality requires some workarounds. Breakpoints set outside device initialisation code (i.e., outside __init__() and
init_device()) only function if the Tango device uses asyncio green mode. In non-asyncio modes, Tango creates new
Python threads to service requests. Unfortunately these threads do not inherit the debugging configuration attached by
PyCharm.

For working breakpoints, there are two solutions:

1. the device must be converted to use asyncio green mode;

2. add pydevd to your Piplock as a project dependency, rebuild the Docker image and refresh the project skele-
tons, then add pydevd.settrace() statements where the breakpoint is required. For example, to add a
breakpoint in the PowerSupply.get_current() method, the code should look like this:

def get_current(self):
"""Get the current"""
import pydevd
pydevd.settrace() # this is equivalent to setting a breakpoint in IDE
return self.__current

Troubleshooting

• SegmentationFaults when using DeviceTestContext

Unit tests that create a new DeviceTestContext per test must run each DeviceTestContext in a new process to
avoid SegmentationFault errors. For more info, see:

– https://github.com/tango-controls/pytango/pull/77

– http://www.tango-controls.org/community/forum/c/development/python/testing-tango-devices-using-pytest/
?page=1#post-3761

• Errors when mixing test types

Running DeviceTestContext tests after test that use a Tango client results in errors where the DeviceTestContext
gets stuck in initialisation. One workaround is to set the filenames so that the DeviceTestContext tests run first.

28 Chapter 2. SKA developer community

https://www.jetbrains.com/help/pycharm/debugging-code.html
https://www.jetbrains.com/help/pycharm/debugging-code.html
https://pytango.readthedocs.io/en/stable/green_modes/green.html
https://github.com/tango-controls/pytango/pull/77
http://www.tango-controls.org/community/forum/c/development/python/testing-tango-devices-using-pytest/?page=1#post-3761
http://www.tango-controls.org/community/forum/c/development/python/testing-tango-devices-using-pytest/?page=1#post-3761

developer.skatelescope.org Documentation, Release 0.1.0-beta

2.12.2 PyCharm Professional docker-compose configuration

These instructions show how to configure PyCharm Professional to use a docker-compose configuration, which al-
lows development and testing of devices that requires interactions with other live devices. Follow the steps below to
configure PyCharm to run tests from the tango-example project that require a live Tango system.

Prerequisites

We recommend you be comfortable with PyCharm and the standard PyCharm Docker configuration before using
docker-compose.

Please follow the steps in the PyCharm Professional Docker configuration topic for some basic familiarity with Py-
Charm and Docker.

Goal

In the Docker configuration, PyCharm used the Python interpreter inside the powersupply:latest image for develop-
ment and testing.

The docker-compose.yml file for the tango-example project declares three containers:

1. tangodb: the relational database used for the Tango installation.

2. databaseds: a container running the device service for the Database.

3. powersupply: a container running the PowerSupply device itself.

We want PyCharm to take the place of the powersupply container, so that tests execute against the code we are
developing. As a result, unit tests should execute in an additional container created for the duration of the test.

Registering the device server

Tango devices must be registered so that other devices and clients can locate them. The docker-compose.yml entry
for the powersupply service automatically registers the powersupply device. However, this automatic registration is
not performed when PyCharm launches the service Manual device registration is easily performed from an interactive
session. The example below registers a test instance of the powersupply device:

mypc:tango-example tangodeveloper$ make interactive
docker build -t nexus.engageska-portugal.pt/tango-example/powersupply:0.1.0-067e5b3-
→˓dirty . -f Dockerfile --build-arg DOCKER_REGISTRY_HOST=nexus.engageska-portugal.pt -
→˓-build-arg DOCKER_REGISTRY_USER=tango-example
Sending build context to Docker daemon 914.4kB
Step 1/4 : FROM nexus.engageska-portugal.pt/ska-docker/ska-python-buildenv:latest AS
→˓buildenv
Executing 3 build triggers
---> Using cache
---> Using cache
---> Using cache
---> 10811adeaf7d

Step 2/4 : FROM nexus.engageska-portugal.pt/ska-docker/ska-python-runtime:latest AS
→˓runtime
Executing 6 build triggers
---> Using cache
---> Using cache
---> Using cache
---> Using cache

(continues on next page)

2.12. PyCharm 29

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

---> Using cache
---> Using cache
---> 1d24e7c0f8aa

Step 3/4 : RUN ipython profile create
---> Using cache
---> 93c8f22c5f87

Step 4/4 : CMD ["/venv/bin/python", "/app/powersupply/powersupply.py"]
---> Using cache
---> b54df79f52d6

[Warning] One or more build-args [DOCKER_REGISTRY_HOST DOCKER_REGISTRY_USER] were not
→˓consumed
Successfully built b54df79f52d6
Successfully tagged nexus.engageska-portugal.pt/tango-example/powersupply:0.1.0-
→˓067e5b3-dirty
docker tag nexus.engageska-portugal.pt/tango-example/powersupply:0.1.0-067e5b3-dirty
→˓nexus.engageska-portugal.pt/tango-example/powersupply:latest
DOCKER_REGISTRY_HOST=nexus.engageska-portugal.pt DOCKER_REGISTRY_USER=tango-example
→˓docker-compose up -d
tango-example_tangodb_1 is up-to-date
tango-example_databaseds_1 is up-to-date
tango-example_powersupply_1 is up-to-date
docker run --rm -it --name=powersupply-dev -e TANGO_HOST=databaseds:10000 --
→˓network=tango-example_default \

-v /Users/stewartwilliams/PycharmProjects/tango-example:/app nexus.engageska-
→˓portugal.pt/tango-example/powersupply:latest /bin/bash
tango@0f360f86d436:/app$ tango_admin --add-server PowerSupply/test PowerSupply test/
→˓power_supply/1

Configure the remote interpreter

Following the official PyCharm documentation, configure Docker Compose as a remote interpreter. Use the docker-
compose.yml file found in the root of the tango-example project, and set the service to powersupply. The docker-
compose.yml file expects the DOCKER_REGISTRY_HOST and DOCKER_REGISTRY_USER arguments to be pro-
vided. Normally these would be provided by the Makefile, but as we are running outside Make then these variables
need to be defined. Set the environment variables to look like this:

30 Chapter 2. SKA developer community

https://www.jetbrains.com/help/pycharm/using-docker-compose-as-a-remote-interpreter.html#docker-compose-remote

developer.skatelescope.org Documentation, Release 0.1.0-beta

The final Configure Remote Python Interpreter dialog should look like this:

Click ‘OK’ to apply your changes.

You can now navigate through the project. As an exercise, open the source code for the PowerSupply class, which
is defined in powersupply/powersupply.py. Like the Docker configuration, notice that the IDE notifications and intel-

2.12. PyCharm 31

developer.skatelescope.org Documentation, Release 0.1.0-beta

lisense / code completion are now based on information gathered from the remote Docker image.

Just as for the Docker configuration, whenever you change the Python environment you should regenerate the project
skeletons to make PyCharm aware of the changes. To do this, select File | Invalidate Caches / Restart. . . from the main
menu.

Running the device

From the main menu, choose Run | Edit Configurations. . . and click on the ‘+’ button to add a new configuration.
From the menu that appears, select Python to add a new Python execution configuration. In the dialog, perform these
steps:

1. Edit the script/module to be executed to point to the powersupply.powersupply module.

2. Add test as an execution parameter; this tells the PowerSupply device to execute as the PowerSupply/test
instance we registered earlier.

3. Change the working directory to the root of the project.

The final Run/Debug dialog should look like this:

Press OK to apply your changes.

From the main menu, choose Run | Run. . . and select the configuration that you just created in the Run dialog
that opens. The PowerSupply device will launch alongside the partner containers defined in docker-compose.yml.
PyCharm’s Run panel will display output like this, showing the device is executing and ready to accept requests.

32 Chapter 2. SKA developer community

developer.skatelescope.org Documentation, Release 0.1.0-beta

Debugging configuration and limitations

The Run configuration also functions as a Debug configuration. Debugging using the docker-compose configuration
behaves identically and is subject to the same limitations as debugging using the Docker configuration. If you are
familiar with these limitations then free to skip ahead to the next section.

Note: The coverage module is not compatible with the PyCharm or Visual Studio Code debugger and must be
disabled before any debugging session. Do so by editing setup.cfg, commenting out the addopts=... line of the
tool:pytest section so that it looks like this:

[tool:pytest]
testpaths = tests
#addopts = --cov=powersupply --json-report --json-report-file=htmlcov/report.
→˓json --cov-report term --cov-report html --cov-report xml --pylint --
→˓pylint-error-types=EF

PyCharm has a debug mode that allows breakpoints to be added to code and the runtime state of the device examined.
Refer to the official PyCharm documentation for comprehensive documentation on how to add breakpoints and run in
debug mode.

The steps in the official documentation can also be used to debug and interact with ah Tango device, using the con-
figuration set up in the previous section as the basis for the debug configuration. However, full breakpoint function-
ality requires some workarounds. Breakpoints set outside device initialisation code (i.e., outside __init__() and
init_device()) only function if the Tango device uses asyncio green mode. In non-asyncio modes, Tango creates new
Python threads to service requests. Unfortunately these threads do not inherit the debugging configuration attached by
PyCharm.

For working breakpoints, there are two solutions:

1. the device must be converted to use asyncio green mode;

2. add pydevd to your Piplock as a project dependency, rebuild the Docker image and refresh the project skele-
tons, then add pydevd.settrace() statements where the breakpoint is required. For example, to add a
breakpoint in the PowerSupply.get_current() method, the code should look like this:

def get_current(self):
"""Get the current"""
import pydevd
pydevd.settrace() # this is equivalent to setting a breakpoint in IDE
return self.__current

2.12. PyCharm 33

https://www.jetbrains.com/help/pycharm/debugging-code.html
https://www.jetbrains.com/help/pycharm/debugging-code.html
https://pytango.readthedocs.io/en/stable/green_modes/green.html

developer.skatelescope.org Documentation, Release 0.1.0-beta

Debugging unit tests

To debug a unit test, we want the unit tests to run in one container while the PyCharm debugger runs and is attached
to the PowerSupply device in another container. The easiest way to accomplish this is to launch the device using the
debug configuration while the tests we are examining are executed from an interactive session.

First, launch an interactive session with make interactive. Keep this session open as we will return to it later.

Note: launching make interactive refreshes and recreates the containers defined in docker-compose.yml. Any devices
launched by PyCharm will be stopped, requiring the device to be started again in PyCharm once the interactive session
is up and running. In short, if you use ‘make interactive’ while devices are running, expect to have to restart your
devices in PyCharm.

From the main menu, choose Run | Debug. . . and select the PowerSupply run configuration you created earlier. The
device will be launched and the PyCharm debugger attached to the session. The Debug panel of PyCharm should look
similar to this:

Returning to the interactive session, run the unit tests that exercise the live Tango device. For the tango-example
project, these tests are found in the file test_2_test_server_using_client.py.

tango@069dde501ca7:/app$ pytest tests/test_2_test_server_using_client.py
============================= test session starts ==============================
platform linux -- Python 3.5.3, pytest-4.2.0, py-1.7.0, pluggy-0.8.1
rootdir: /app, inifile: setup.cfg
plugins: pylint-0.14.0, metadata-1.8.0, json-report-1.0.2, cov-2.6.1
collected 5 items

tests/test_2_test_server_using_client.py [100%]

=========================== 5 passed in 0.18 seconds ===========================

Set a breakpoint in the PowerSupply.turn_on() method and a single unit test that exercises this function.

tango@069dde501ca7:/app$ pytest tests/test_2_test_server_using_client.py -k test_turn_
→˓on
============================= test session starts ==============================
platform linux -- Python 3.5.3, pytest-4.2.0, py-1.7.0, pluggy-0.8.1

(continues on next page)

34 Chapter 2. SKA developer community

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

rootdir: /app, inifile: setup.cfg
plugins: pylint-0.14.0, metadata-1.8.0, json-report-1.0.2, cov-2.6.1
collected 5 items / 4 deselected / 1 selected

tests/test_2_test_server_using_client.py . [100%]

==================== 1 passed, 4 deselected in 0.15 seconds ====================

The tests execute but unfortunately the breakpoint is not hit. This is because breakpoints in the main body of the
device are not activated (see Debugging configuration and limitations for the reasons for this). To work around this, a
breakpoint must be introduced into the code itself. Edit the turn_on method in powersupply.py to look like this:

@command
def turn_on(self):

"""Turn the device on"""
turn on the actual power supply here
import pydevd
pydevd.settrace()
self.set_state(DevState.ON)

Restart the debugging configuration for the code change to take effect and re-execute the test in the interactive session.
This time, the breakpoint is respected and execution is frozen, allowing program state to be examined in PyCharm.
The debug panel in PyCharm will look something like this, showing that execution is frozen:

Troubleshooting

• The device server is not defined in the database

If you see an error message like the one below, then the device is unregistered and needs to be
registered manually. Follow the steps in Registering the device server.

2.12. PyCharm 35

developer.skatelescope.org Documentation, Release 0.1.0-beta

• The DOCKER_REGISTRY_HOST variable is not set

If you see an error message like the one below, then you forgot to define the environment variables
for the remote interpreter. Edit the variables section in your PyCharm docker-compose configuration
and try again.

• PyCharm Professional Docker configuration

• PyCharm Professional docker-compose configuration

2.13 Visual Studio Code

Visual Studio Code is a recommended IDE for developing SKA control system software.

Visual Studio Code is an open source project and available for free from the VSCode download page.

36 Chapter 2. SKA developer community

https://code.visualstudio.com/Download

developer.skatelescope.org Documentation, Release 0.1.0-beta

2.13.1 Visual Studio Code docker configuration

These instructions show how to configure Visual Studio Code for SKA control system development using the SKA
Docker images. VSCode can be configured to debug using the Python interpreter inside a Docker image, which allows:

• development and testing without requiring a local Tango installation;

• the development environment to be identical to the testing and deployment environment, eliminating problems
that occur due to differences in execution environment.

Limitations of VSCode docker container debugging compared to PyCharm:

• Unlike PyCharm Pro Edition, VSCode docker integration doesn’t allow for code completion and linting using a
docker container though. Therefore in order to have intellisense (code completion inside VSCode) and linting
you will need to have a local installation of the project as well (i.e. a pipenv environment).

• VSCode remote debugging library ptvsd presently conflicts with pytest, meaning that debugging breakpoints
cannot be set while running the automated unit testing. Still, you can set any particular unit test file as the entry
point for debugging and set breakpoints normally in it. The developing approach should then be to run the unit
tests from the terminal, and then in case of errors, to analyze the specific test routine from within the debugger
in VSCode.

Improvements to debugging capabilities in VSCode compared to PyCharm:

• Unlike PyCharm, VSCode does allow for setting up breakpoints on non-asyncio modes.

Follow the steps below to configure VSCode to develop new code and run tests for the tango-example project using
the Docker images for the project.

Prerequisites

Make sure that the following prerequisites are met:

• Docker is installed, as described on the page Docker Docs.

• Visual Studio Code must be installed.

• You have basic familiarity with VSCode - If this is the first time you have used VSCode, follow the First Steps
tutorials so that you know how to use VSCode to develop, debug, and test a simple Python application using a
local Python interpreter.

Clone the tango-example project and get VSCode to recognize it

1. Clone the tango-example repository in your local machine.

2. Open VSCode from inside the tango-example folder.

Build the application image (this step is optional)

With the source code source code checked out, the next step is to build a Docker image for the application. This image
will contain the Python environment which will we will later connect to VSCode.

Start a terminal session inside VSCode:

2.13. Visual Studio Code 37

https://docs.docker.com/
https://code.visualstudio.com/
https://code.visualstudio.com/docs/python/python-tutorial
https://github.com/ska-telescope/tango-example

developer.skatelescope.org Documentation, Release 0.1.0-beta

On the terminal tab build the image by typing make build. This step is optional since the ‘‘make interactive‘‘
command described bellow, takes care of this task if needed:

Start the docker container in interactive mode and debug

Having the built docker image in the system we now start the docker container in interactive mode and are ready to
debug.

• On the terminal tab start the container interactively with make interactive:

38 Chapter 2. SKA developer community

developer.skatelescope.org Documentation, Release 0.1.0-beta

• Debug a particular file using the vscode-debug.sh utility inside the docker image. For instance ./
vscode-debug.sh powersupply/powersupply.py:

Notice that the terminal shell now shows a message stating that it is waiting for the debugger attachment:

tango@b2dbf52b73c7:/app$./vscode-debug.sh powersupply/powersupply.py
[+] Waiting for debugger attachment.

• You can now set breakpoints inside the VSCode editor (or use previously set ones):

2.13. Visual Studio Code 39

developer.skatelescope.org Documentation, Release 0.1.0-beta

40 Chapter 2. SKA developer community

developer.skatelescope.org Documentation, Release 0.1.0-beta

• Start the debugger from whitin VSCode by pressing F5 or the debug button under the debug tab:

2.13. Visual Studio Code 41

developer.skatelescope.org Documentation, Release 0.1.0-beta

Note: For general information on how to use the native VSCode debugger, consult the Debugging documentation
from VSCode.

Troubleshooting

• make interactive fails

If the debugger is disconnected improperly, there is a possibility that the docker containers are left running in
the background and it isn’t possible to start a new interactive sessions from the VSCode terminal:

docker run --rm -it -p 3000:3000 --name=powersupply-dev -e TANGO_
→˓HOST=databaseds:10000 --network=tango-example_default \
-v /home/morgado/Sync/Work/Code/ska/tango-example:/app registry.gitlab.com/ska-

→˓telescope/tango-example/powersupply:latest /bin/bash
docker: Error response from daemon: Conflict. The container name "/powersupply-dev
→˓" is already in use by container
→˓"215a9150910605a0670058a0023cbd2d180f1cea11d196b2a413910fb428e290". You have to
→˓remove (or rename) that container to be able to reuse that name.
See 'docker run --help'.
Makefile:59: recipe for target 'interactive' failed
make: *** [interactive] Error 125

In this case you need to check what are the docker containers running using docker ps, and then kill the
containers that are running in the background with docker kill CONTAINER_NAME.

• Visual Studio Code docker configuration

42 Chapter 2. SKA developer community

https://code.visualstudio.com/Docs/editor/debugging

CHAPTER 3

Development tools

3.1 Working with git

Git is adopted as distributed version control system, and all SKA code shall be hosted in a git repository. The github
organization ska-telescope can be found at https://github.com/ska-telescope . All SKA developers must have a github
account and be added to the organization as part of a team.

• Working with git

3.2 Working with SKA Jira

Every team is tracking daily work in a team-based project on our JIRA server at [https://jira.skatelescope.org]

Todo:

• Create a new project

• Link to issue tracker

3.3 Development Environments

3.3.1 Python and Tango development

A completely configured development environment can be set up very easily. This will include TANGO, PyTANGO,
docker and properly configured IDEs.

• Tango Development Environment set up

PyCharm and VSCode are two IDEs that can be configured to support python and PyTANGO development activities.
You will find detailed instructions and how-tos at:

43

https://github.com/ska-telescope
https://jira.skatelescope.org

developer.skatelescope.org Documentation, Release 0.1.0-beta

• PyCharm

• Visual Studio Code

Software Testing Policy and Strategy

List of abbreviations

ABBR MEANING
CD Continuous Delivery
CI Continuous Integration
ISTQB International Software Testing Qualifications Board
PI Program Increment (SAFe context)
PO Product Owner
SAFe Scaled Agile Framework
SKA Square Kilometre Array
SKAO SKA Organisation
TDD Test Driven Development

1 Introduction

What follows is the software testing policy and strategy produced by Testing Community of Practice.

This is version 1.1.0 of this document, completed on 2019-07-09.

1.1 Purpose of the document

The purpose of the document is to specify the testing policy for SKA software, which answers the question “why
should we test?”, and to describe the testing strategy, which answers “how do we implement the policy?”.

The policy should achieve alignment between all stakeholders regarding the expected benefit of testing. The strategy
should help developers and testers to understand how to define a testing process.

1.2 Scope of the document

This policy and this strategy apply exclusively to software-only SKA artifacts that are developed by teams working
within the SAFe framework. As explained below, a phased adoption approach is followed, and therefore it is expected
that the policy and the strategy will change often, likely at least twice per year until settled.

The document will evolve quickly during the SKA Bridging phase in order to reach a good level of maturity prior to
SKA1 construction starts.

Each team is expected to comply with the policy and to adopt the strategy described here, or define and publish a more
specific strategy in cases this one is not suitable.

1.3 Applicable documents

The following documents are applicable to the extent stated herein. In the event of conflict between the contents of the
applicable documents and this document, the applicable documents shall take precedence.

1. SKA-TEL-SKO-0000661 - Fundamental SKA Software and Hardware Description Language Standards

44 Chapter 3. Development tools

developer.skatelescope.org Documentation, Release 0.1.0-beta

2. SKA-TEL-SKO-0001201 - ENGINEERING MANAGEMENT PLAN

1.4 Reference documents

International Software Testing Qualification Board - Glossary https://glossary.istqb.org

See other referenced material at the end of the document.

2 Adoption strategy

Testing within the SKA will be complex for many reasons, including a broad range of programming languages and
frameworks, dispersed geographical distribution of teams, diverse practices, extended life-time, richness and complex-
ity of requirements, need to cater for different audiences, among others.

In order to achieve an acceptable level of quality, many types of testing and practices will be required, including:
coding standards, unit testing/code coverage, functional testing, multi-layered integration testing, system testing, per-
formance testing, security testing, compliance testing, usability testing.

In order to establish a sustainable testing process, we envision a phased adoption of a proper testing policies and
strategies, tailored to the maturity of teams and characteristics of the software products that they build: different teams
have different maturity, and over time maturity will evolve. Some team will lead in maturity; some other will struggle,
either because facing difficult-to-test systems, complex test environments or because they started later.

An important aspect we would like to achieve is that the testing process needs to support teams, not hinder them with
difficult-to-achieve goals that might turn out to be barriers rather than drivers. Only after teams are properly supported
by the testing process we will crank up the desired quality of the product and push harder on the effectiveness of tests.

We envision 3 major phases:

• Enabling teams, from mid 2019 for a few PIs

• Establishing a sustainable process, for a few subsequent PIs

• Keep improving, afterwards.

3 Phase 1: Enabling Teams

This early phase should start now (June 2019) and should cover at least the next 1-2 Program Increments.

The overarching goal is to establish a test process that supports the teams. In other terms this means that de-
velopment teams will be the major stakeholders benefiting by the testing activities that they will do. Testing should
cover currently used technologies (which include Tango, Python, C++, Javascript), it should help uncovering risks
related with testability of the tested systems and with reliability issues of the testing architecture (CI/CD pipelines, test
environments, test data).

As an outcome of such a policy it is expected that appropriate technical practices are performed regularly by each team
(eg. TDD, test-first, test automation). This will allow us in Phase 2 to crank up quality by increasing testing intensity
and quality, and still have teams following those practices.

It is expected that the systems that are built are modular and testable from the start, so that in Phase 2 the roads are
paved to enable increase of quality and provide business support by the testing process in terms of monitoring the
quality.

One goal of this initial phase is to create awareness of the importance given to testing by upper management. Means
to implement a testing process will be provided (tools, training, practices, guidelines), so that teams could adopt them.

We plan to cover at least these practices:

3.3. Development Environments 45

https://glossary.istqb.org

developer.skatelescope.org Documentation, Release 0.1.0-beta

• TDD and Test-First.

• Use of test doubles (mocks, stub, spies).

• Use and monitoring of code coverage metrics. Code coverage should be monitored especially for understanding
which parts of the SUT have NOT been tested and if these are important enough to be tested. We suggest that
branch coverage is used whenever possible (as opposed to statement/line coverage).

Another goal of this phase is identifying the test training needs for the organization and teams and start providing
some support (bibliography, slides, seminars, coaching).

In order to focus on supporting the teams, we expect that the testing process established in this initial phase should
NOT:

• enforce strict mandatory policies regarding levels of coverage of code (regardless of the coverage criteria such
as statements, branch, or variable usage-definition), of data, of requirements and of risks;

• systematically cover system-testing;

• rely on exploratory testing (which will be introduced later on);

• define strict entry/exit conditions for artefacts on the different CI stages to avoid creating stumbling blocks for
teams;

• provide traceability of requirements and risks;

• be centered on “specification by example” yet.

We will focus on these aspects in subsequent phases.

On the other hand, the testing process should help creating testable software products, it should lead to a well-designed
test automation architecture, teams should become exposed and should practice TDD, test-first, and adopt suitable test
automation patterns.

An easy-to-comply test policy is suggested, and a strategy promoting that testing should be applied during each sprint,
automated tests should be regularly developed at different levels (unit, component, integration), regression testing
should be regularly done, test-first for bugs and refactorings should be regularly done.

Basic monitoring of the testing process will be done, to help teams improve themselves and possibly to create compe-
tition across teams. Test metrics will include basic ones dealing with the testing process, the testing architecture and
the product quality.

4 Testing policy

This policy covers all sorts of software testing performed on the code bases developed by each of the SKA teams.
There is only one policy, and it applies to all software developed within/for SKA.

4.1 Key definitions

When dealing with software testing, many terms have been defined differently in different contexts. It is important
to standardise the vocabulary used by SKA1 in this specific domain according to the following definitions, mostly
derived from ISTQB Glossary].

Testing The process consisting of all lifecycle activities, both static and dynamic, concerned with planning, prepa-
ration and evaluation of software products and related work products to determine that they satisfy specified
requirements, to demonstrate that they are fit for purpose and to detect bugs.

Debugging The process of finding, analyzing and removing the causes of failures in software.

46 Chapter 3. Development tools

developer.skatelescope.org Documentation, Release 0.1.0-beta

Bug A flaw in a component or system that can cause the component or system to fail to perform its required function,
e.g. an incorrect statement or data definition. Synonyms: defect, fault.

Failure/Symptom Deviation of the component or system from its expected delivery, service or result.

Error A human action that produces an incorrect result (including inserting a bug in the code or writing the wrong
specification).

NOTE: the purpose of defining both “testing” and “debugging” is so that readers get rid of the idea that one does
testing while he or she is doing debugging. They are two distinct activities.

4.2 Work organization

Testing is performed by the team who develops the software. There is no dedicated group of people who are in charge
of testing, there are no beta-testers.

4.3 Goals of testing

The overarching goal of this version of the policy is to establish a testing process that supports the teams.

With reference to the test quadrants (Figure 1), this policy is restricted to tests supporting the teams and mostly those
that are technology facing, hence quadrant Q1 (bottom left) and partly Q2 (top left), functional acceptance tests.

Figure 1: Test quadrants, picture taken from (Humble and Farley, Continuous Delivery, 2011).

The expected results of applying this policy are that effective technical practices are performed regularly by each
team (eg. TDD, test-first, test automation). The testing process that will be established should help creating testable
software products, it should lead to a well-designed test automation architecture, it should push teams to practice TDD,
test-first, and adopt suitable test automation patterns.

The reason is that in this way the following higher level objectives can be achieved:

3.3. Development Environments 47

developer.skatelescope.org Documentation, Release 0.1.0-beta

• team members explore different test automation frameworks and learn how to use them efficiently;

• team members learn how to implement tests via techniques like test driven development and test-first, how to
use test doubles, how to monitor code coverage levels, how to do pair programming and code reviews;

• as an effect of adopting some of those techniques, teams reduce technical debt or keep it at bay; therefore they
become more and more efficient in code refactoring and in writing high quality code;

• they will become more proficient in increasing quality of the testing system, so that it becomes easily maintain-
able;

• by adopting some of those techniques, teams will develop systems that are more and more testable; this will
increase modularity, extendability and understandability of the system, hence its quality;

• team members become used to developing automated tests within the same sprint during which the tested code
is written;

• reliance on automated tests will reduce the time needed for test execution and enable regression testing to be
performed several times during a sprint (or even a day).

Emphasis on quadrant 1 of Figure 1, and low importance to the other quadrants, will allow the teams to be more
focussed (within the realm of testing) and learn the basics. Some attention to quadrant 2 will let teams start addressing
tests at a higher level, which bring along aspects like traceability (relationships between tests and requirements) and
integration between subsystems.

Expected outcomes are that once testable systems are produced, a relatively large number of unit/module tests will
be automated, new tests will be regularly developed within sprints, refactorings will be “protected” by automated
tests, and bug fixes will be confirmed by specific automated tests, teams will be empowered and become efficient
in developing high quality code. From that moment, teams will be ready to improve the effectiveness of the testing
process, which will gradually cover also the other quadrants.

In this phase we can still expect a number of bugs to still be present, to have only a partial assessment of “fitness for
use”, test design techniques not to be mastered, non-functional requirements not be systematically covered, testing
process not to be extensively monitored, systematic traceability of tests to requirements not to be covered, and moni-
toring of quality also not to be covered. These are objectives to be achieved in later phases, with enhancements of this
policy.

4.4 Monitoring implementation of the policy

Adoption of this policy needs to be monitored in a lightweight fashion. We suggest that each team regularly (such as
at each sprint) reports the following (possibly in an automatic way):

• total number of test cases

• percentage of automated test cases

• number of test cases/lines of source code

• number of logged open bugs

• bug density (number of open logged defects/lines of source code)

• age of logged open bugs

• number of new or refactored test cases/sprint

• number of test cases that are labelled as “unstable” or that are skipped

• code coverage (the “execution branch/decision coverage” criterion is what we would like to monitor, for code
that was written by the team).

48 Chapter 3. Development tools

developer.skatelescope.org Documentation, Release 0.1.0-beta

These metrics should be automatically computed and updated, and made available to every stakeholder in SKA.

Note: Some of these metrics are already collected and displayed in https://argos.engageska-portugal.pt (user-
name=viewer, password=viewer).

5 Testing strategy

A testing strategy describes how the test policy is implemented and it should help each team member to better under-
stand what kind of test to write, how many and how to write them. This testing strategy refers to the testing policy
described above, for Phase 1.

Because of the diversity of SKA development teams and the diversity of the nature of the systems that they work upon
(ranging from web-based UIs to embedded systems), it seems reasonable to start with a testing strategy that is likely
to be suitable for most teams and let each team decide if a refined strategy is needed. In this case each team should
explicitly define such a modified strategy and make it public.

5.1 Key definitions and concepts

Mostly derived from the ISTQB glossary.

Testing levels refer to the granularity of the system-under-test (SUT):

Unit testing The testing of individual software units. In a strict sense it means testing methods or functions in such
a way that it does not involve the filesystem, the network, the database. Usually these tests are fast (i.e. an
execution of a test set provides feedback to the programmer in a matter of seconds, perhaps a minute or two;
each test case runs for some milliseconds). Normally the unit under test is isolated from its environment.

Module testing The testing of an aggregate of classes, a package, a set of packages, a module. Sometimes this is also
called “component testing”, but to avoid ambiguity with the notion of component viewed as runtime entities
according to the SEI “Views and Beyond” we will use “module testing”.

Component testing Here the word “component” refers to deployment units, rather than software modules or other
static structures. Components can be binary artefacts such as jar, DLL or wheel files run within threads, pro-
cesses, services or virtual docker components.

Integration testing Testing performed to expose defects in the interfaces and in the interaction between integrated
components or systems. In a strict sense this level applies only to testing the interface between 2+ components;
in a wider sense it means testing that covers a cluster of integrated subsystems.

System testing Testing an integrated system to verify that it meets specified requirements.

Acceptance testing Formal testing with respect to user needs, requirements, and business processes conducted to
determine whether or not a system satisfies the acceptance criteria and to enable the user, customers or other
authorized entity to determine whether or not to accept the system.

Other definitions are:

Test basis All artifacts from which the requirements of a unit, module, component or system can be inferred and the
artifacts on which the test cases are based. For example, the source code; or a list of requirements; or a set of
partitions of a data domain; or a set of configurations.

Confirmation testing Testing performed when handling a defect. Done before fixing it in order to replicate and
characterise the failure. Done after fixing to make sure that the defect has been removed.

Regression testing Testing of a previously tested program following modification to ensure that defects have not been
introduced or uncovered in unchanged areas of the software, as a result of the changes made. It is performed
when the software or its environment is changed.

3.3. Development Environments 49

https://argos.engageska-portugal.pt

developer.skatelescope.org Documentation, Release 0.1.0-beta

Exploratory testing An informal test design technique where the tester actively designs the tests as those tests are
performed and uses information gained while testing to design new and better tests. It consists of simultaneous
exploration of the system and checking that it does what it should.

6.2 Scope, roles and responsibilities

This strategy applies to all the software that is being developed within the SKA.

Each team should have at least a tester, which is the “testing conscience” within the team. Because of the specific
skills that are needed to write good tests and to manage the testing process, we expect that in the coming months a
tester will become a dedicated person in each team. For the time being we see “tester” as being a function within the
team rather than a job role. Each team member should contribute to this function although one specific person should
be held accountable for testing.

In most cases, programmers are responsible for developing unit tests, programmers and testers together are responsible
for designing and developing module and integration tests, testers and product owners are responsible for designing
component, system and acceptance tests for user stories, enablers, and features.

5.3 Test specification

Programmers adopt a TDD or test-first approach and almost all unit and module tests are developed before production
code on the basis of technical specifications or intended meaning of the new code. Testers can assist programmers in
defining good test cases.

In addition, when beginning to fix a bug, programmers, possibly with the tester, define one or more unit/module tests
that confirm that bug. This is done prior to fixing the bug.

Furthermore, the product owner with a tester and a programmer define the acceptance criteria of a user story and on
this basis the tester with the assistance of programmers designs acceptance, system, and integration tests. Some of
these acceptance tests are also associated (with tags, links or else) to acceptance criteria of corresponding features. All
these tests are automated, possibly during the same sprint in which the user story is being developed.

5.4 Test environment

In this version of the strategy we do not cover provisioning of environments for running functional and performance
tests of complex systems. We expect those teams to come up with suggestions and prototype solutions that could be
included in this strategy later on.

5.5 Test data

In this version of the strategy we do not cover sophisticated mechanisms for handling data to support functional and
performance tests of complex systems. We expect those teams to come up with suggestions and prototype solutions
that could be included in this strategy later on.

5.6 Test automation

At the moment these elements are still under active investigation. As explained elsewhere in this portal, python
developers generally rely on pytest and associated libraries (for assertions, for mocking); similarly developers uisng
javascript rely on Jest. For component, system, and acceptance tests developers may rely also on Gherkin tests (aka,
Behavior Driven Development tests).

50 Chapter 3. Development tools

developer.skatelescope.org Documentation, Release 0.1.0-beta

5.7 Confirmation and regression testing

Regression testing is performed at least every time code is committed on any branch in the source code repository.
This should be ensured by the CI/DI pipeline.

In order to implement an effective CI/CD pipeline, automated test cases should be classified also (in addition to
belonging to one or more test sets) in terms of their speed of execution, like “fast”, “medium”, “slow”. In this way a
programmer that wants a quick feedback (less than 1 minute) would run only the fast tests, the same programmer that
is about to commit his/her code at the end of the day might want to run fast and medium tests and be willing to wait
some 10 minutes to get feedback, and finally a programmer ready to merge a branch into master might want to run all
tests, and be willing to wait half an hour or more.

Confirmation tests are run manually to confirm that a bug really exist.

5.8 Bug management

We recommend the following process for handling bugs.

• Bugs found by the team during a sprint for code developed during the same sprint are fixed on the fly, with no
logging at all. If they cannot be fixed on the fly, soon after they are found they are logged on the team backlog.

• Bugs that are found by the team during a sprint but that are related to changes made in previous sprints, are
always logged on the team backlog (this is useful for measuring the quality of the testing process, with a metric
called defect-detection-rate).

• Bugs that are reported by third parties (eg. non SKA and SKA users, other teams, product managers) are always
logged, by whoever can do it, which becomes the bug-report owner. These bugs have to undergo a triage stage
to confirm that they are a bug and find the team that is most appropriate to deal with them. At that point the bugs
appear in the chosen team’s backlog. When resolved, appropriate comments and workflow state are updated in
the team’s backlog, and the original bug-report owner is notified as well, who may decide to close the bug, to
keep it open, to change it.

Logging occurs in JIRA by adding a new issue of type Bug to the product backlog and prioritized by the PO as every
other story/enabler/spike. The issue type Defect should not be used, as it is meant to indicate a deviation from SKA
requirements.

For system-wide bugs the JIRA project called SKB (SKA bug tracking system) is used. Triage of these bugs is done
by the SYSTEM team with support by selected people.

• SKA Bug tracking project

6 General references

Relevant textbooks include:

• Managing the Testing Process: Practical Tools and Techniques for Managing Hardware and Software Testing,
R. Black, John Wiley & Sons Inc, 2009

• Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation, J.
Humble and D. Farley, Addison-Wesley Professional, 2010

• xUnit Test Patterns: Refactoring Test Code, G. Meszaros, Addison-Wesley Professional, 2007

• Test Driven Development. By Example, Addison-Wesley Professional, K. Beck, 2002

• Agile Testing: A Practical Guide for Testers and Agile Teams, L. Crispin, Addison-Wesley Professional,
2008

3.3. Development Environments 51

https://jira.skatelescope.org/projects/SKB/summary

developer.skatelescope.org Documentation, Release 0.1.0-beta

Definition of Done

Done-ness is defined differently at different stages of development and for different purposes.

Story

• Code is supplied with an acceptable license

• Code is peer-reviewed and has been integrated into the main branch (via pull-request process)

• Code is checked into SKA repository with reference to ticket

• Code has tests that have adequate (between 75% and 90%) coverage

• Code compiles cleanly with no warnings

• Code adheres to SKA language specific style

• Code is deployed to continuous integration environment

• Code passes regression testing

• Code passes smoke test

• NFRs are met

• Story is tested against acceptance criteria

• Story is documented

• Story ok-ed by Product Owner

Code documentation

• Public API exposed is clearly documented

• Code is documented inline according to language specific standards

• Documentation is peer-reviewed by stakeholder (e.g. Product Owner for a feature or technical peer for an
enabler) via pull-request mechanism.

• Documentation is deployed to externally visible website accessible via the developer portal.

Feature

• Feature has been demonstrated to relevant stakeholders

• Feature meets the acceptance criteria

• Feature is accepted by Feature owner

• Feature is integrated in an integration environment

• Code documentation is integrated as part of the developer portal

• Architectural documentation is updated to reflect the actual implementation

52 Chapter 3. Development tools

developer.skatelescope.org Documentation, Release 0.1.0-beta

Formally Controlled Project Documentation

Some documentation (particularly architectural documentation) that impacts other parts of the project must to be
formally reviewed and placed in the project’s configuration management system. Whilst there is an unavoidable
overhead to this we aim to make it as efficient as possible. However, this level of documentation requires you to follow
the process in the Configuration Management are of Confluence, specifically:

• Document number obtained by completing and forwarding the New Document Request Form to mailto:cm@
skatelescope.org.

• Document is reviewed by suitable reviewer(s).

• Document is in eB and signed off.

3.3. Development Environments 53

https://confluence.skatelescope.org/display/CMI/Document+Management
https://ska-aw.bentley.com/SKAProd/Search/QuickLink.aspx?n=SKA-TEL-SKO-0000511&t=3&d=Main%5ceB_PROD&sc=Global&i=view
mailto:cm@skatelescope.org
mailto:cm@skatelescope.org

developer.skatelescope.org Documentation, Release 0.1.0-beta

54 Chapter 3. Development tools

CHAPTER 4

Development practices followed at SKA

4.1 Testing policy and strategy

The SKA testing policy and strategy contains useful guidelines and practices to be followed when developing software
for the SKA project.

• Software Testing Policy and Strategy

4.2 Definition of Done

The definition of done is used to guide teams in planning and estimating the size of stories and features:

• Definition of Done

4.2.1 Getting Started

I want to..

Add a new project to SKA organisation

• Our project details can be found in the section about how to Create a new project.

Develop a Tango device

• A sample PyTango device project that can be forked can be found at https://github.com/ska-telescope/
tango-example/

• Documentation for it can be found at https://developer.skatelescope.org/projects/tango-example/en/latest/
?badge=latest

55

https://github.com/ska-telescope/tango-example/
https://github.com/ska-telescope/tango-example/
https://developer.skatelescope.org/projects/tango-example/en/latest/?badge=latest
https://developer.skatelescope.org/projects/tango-example/en/latest/?badge=latest

developer.skatelescope.org Documentation, Release 0.1.0-beta

Containerise my solution

Our containerisation standards can be found in the containerisation section.

• Verify Docker installation

– Docker installation instructions:

$ docker -v

Docker version 1.7.0, build 0baf609

Incorporate my project into the integration environment

We use Kubernetes as orchestration layer - refer to our Orchestration Guidelines.

Once a project is ready to form part of the integrated solution, we need to verify that all prerequisites are installed and
working properly.

• Verify kubectl installation

– kubectl installation instructions.

$ kubectl version

Client Version: version.Info{Major:"1", Minor:"15", GitVersion:"v1.15.1", GitCommit:
→˓"4485c6f18cee9a5d3c3b4e523bd27972b1b53892",
GitTreeState:"clean", BuildDate:"2019-07-18T09:18:22Z", GoVersion:"go1.12.5",

→˓Compiler:"gc", Platform:"linux/amd64"}
The connection to the server localhost:8080 was refused - did you specify the right

→˓host or port?

• Verify Minikube installation

– Minikube installation instructions.

$ minikube

Minikube is a CLI tool that provisions and manages single-node Kubernetes clusters
→˓optimized for development workflows...

• Launch Kubernetes.

– Look out for kubectl is now configured to use “minikube” near the end:

$ sudo -E minikube start --vm-driver=none --extra-config=kubelet.resolv-conf=/var/
→˓run/systemd/resolve/resolv.conf

minikube v0.34.1 on linux (amd64)
Configuring local host environment ...

The 'none' driver provides limited isolation and may reduce system security and
→˓reliability.

For more information, see:
https://github.com/kubernetes/minikube/blob/master/docs/vmdriver-none.md

kubectl and minikube configuration will be stored in /home/ubuntu
To use kubectl or minikube commands as your own user, you may

(continues on next page)

56 Chapter 4. Development practices followed at SKA

https://developer.skatelescope.org/en/latest/development/containerisation-standards.html#container-standards-cheatsheet
https://docs.docker.com/install/linux/docker-ce/ubuntu
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-minikube/

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

need to relocate them. For example, to overwrite your own settings:

sudo mv /home/ubuntu/.kube /home/ubuntu/.minikube $HOME
sudo chown -R $USER /home/ubuntu/.kube /home/ubuntu/.minikube

This can also be done automatically by setting the env var CHANGE_MINIKUBE_NONE_
→˓USER=true
Creating none VM (CPUs=2, Memory=2048MB, Disk=20000MB) ...
"minikube" IP address is 192.168.86.29
Configuring Docker as the container runtime ...
Preparing Kubernetes environment ...
kubelet.resolv-conf=/var/run/systemd/resolve/resolv.conf

Pulling images required by Kubernetes v1.13.3 ...
Launching Kubernetes v1.13.3 using kubeadm ...
Configuring cluster permissions ...
Verifying component health
kubectl is now configured to use "minikube"
Done! Thank you for using minikube

Test that the connectivity in the cluster works

$ kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
coredns-86c58d9df4-5ztg8 1/1 Running 0 3m24s
...

• Verify Helm installation

– Helm installation instructions

$ helm

The Kubernetes package manager

To begin working with Helm, run the 'helm init' command:

$ helm init
...

Once Helm is installed, develop a helm chart for the project. Refer to Helm instructions for guidelines.

Install Helm charts from our own repository

The SKAMPI repository is in essence a configuration management repository, which basically just consists of a num-
ber of Helm charts and instructions for installing them on a kubernetes cluster.

Installing Helm charts from our own Helm Chart Repository is another option, specifically that enables installing
different charts during run-time.

To add the SKA Helm chart repo to your local Helm, simply run

$ helm repo add skatelescope https://nexus.engageska-portugal.pt/repository/helm-chart

Working with the Helm chart repository, including how to package and upload charts to our repository, is described
here in detail.

4.2. Definition of Done 57

https://github.com/helm/helm
https://developer.skatelescope.org/en/latest/development/orchestration-guidelines.html#templating-the-application
https://gitlab.com/ska-telescope/skampi
https://nexus.engageska-portugal.pt/#browse/browse:helm-chart

developer.skatelescope.org Documentation, Release 0.1.0-beta

Deploy the TMC prototype and Webjive in kubernetes

The integration github repository can be found at https://gitlab.com/ska-telescope/skampi.

Documentation on deployment can be found at https://developer.skatelescope.org/projects/skampi/en/latest/
README.html

Add the helm chart to the skampi repository: Integration instructions.

• Verify k8s integration

– Launch the integration environment

$ make deploy_all KUBE_NAMESPACE=integration

and verify that the pods are able to startup without any errors

$ watch kubectl get all,pv,pvc,ingress -n integration

Every 2.0s: kubectl get all,pv,pvc -n integration osboxes: Fri Mar 29
→˓09:25:05 2019

NAME READY STATUS RESTARTS
→˓AGE
pod/databaseds-integration-tmc-webui-test-0 1/1 Running 3
→˓117s
pod/rsyslog-integration-tmc-webui-test-0 1/1 Running 0
→˓117s
podtangodb-integration-tmc-webui-test-0 1/1 Running 0
→˓117s
pod/tangotest-integration-tmc-webui-test 1/1 Running 2
→˓117s
pod/tmcprototype-integration-tmc-webui-test 4/5 CrashLoopBackOff 2
→˓117s
pod/webjive-integration-tmc-webui-test-0 4/4 Running 0
→˓117s
...

4.2.2 Fundamental SKA Software Standards

These standards underpin all SKA software development. The canonical copy of this information is held in eB, but
the essential information is on this page, which is extracted from the eB document.

Standards Applicable to all SKA Software

1. All SKA software shall have a copyright notice which is a description of who asserts the copyright over the
software.

a. Notes:

i. Derived software and bespoke software will normally be comprised of code modules which have a
mixture of copyright attributions. Some code modules will have joint copyright, and others have sole
copyright, but the codebase in its entirety will have a mixture.

2. All SKA software shall have a software license which is a legal instrument governing the use or redistribution
of software.

b. Notes:

58 Chapter 4. Development practices followed at SKA

https://gitlab.com/ska-telescope/skampi
https://developer.skatelescope.org/projects/skampi/en/latest/README.html
https://developer.skatelescope.org/projects/skampi/en/latest/README.html
https://developer.skatelescope.org/en/latest/development/orchestration-guidelines.html#integrating-a-chart-into-the-skampi-repo
https://ska-aw.bentley.com/SKAProd/Search/QuickLink.aspx?n=SKA-TEL-SKO-0000661&t=3&d=&sc=Global&i=view

developer.skatelescope.org Documentation, Release 0.1.0-beta

ii. Off-the-shelf software will normally have licenses over which the SKA has no control.

iii. Derived software may have mixture of licenses.

iv. Bespoke software will normally have a permissive open source license.

3. The documentation associated with SKA software shall also carry a license unless it is covered by the software
license.

4. All software licenses governing a body of software must be mutually compatible.

5. All software licenses for SKA software shall be agreed with the SKA Organisation prior to the software being
adopted or developed.

c. Notes:

v. The SKA Organisation will always agree to a 3 clause BSD license for software (provided there are
no compatibility issues) and will favour open-source permissive licenses with attribution since they
minimize compatibility issues.

vi. The SKA Organisation will always agree to a Creative Commons Attribution 4.0 International License
for documentation (provided there are no compatibility issues).

vii. This permissive open source recommendation is significantly more permissive than the SKA IP policy
[RD1] which only requires contributors to “grant non-exclusive, worldwide, royalty-free, perpetual,
and irrevocable sub-licenses to other SKA Contributors to use those innovations and work products
for SKA Project purposes only.”

viii. It is understood that the IP licensing environment of FPGA software is often substantially different to
that of the open source software environment, with many (or most) developments relying on IP (from
the FPGA vendor, for example) that has more restrictive licensing. In accordance with this standard,
use of this IP, and its associated license, must be agreed with the SKA Organisation.

Standards applicable to Off-the-shelf software

All SKA Software which is off-the-shelf software shall have:

1. A business case describing the requirements for the software, in comparison to other software.

2. A record of the evidence that demonstrates that the software meets these requirements.

3. A description of how the software will be supported during the expected lifetime of the software.

a. Notes:

i. The SKA Observatory has a predicted lifetime of 50 years, which is much longer than most software
products and the companies that develop them. Hence this description may include: how many al-
ternatives exist which also support the software’s data products, escrow agreements and commercial
soundness of the company. Support includes:

1. Managing unexpected behaviour of the software that is incompatible with the SKA Observatory’s
(possibly evolving) requirements.

2. Managing the evolution of underlying systems, such as hardware and operating systems, that the
software depends on.

3. Managing changes to the existing supplier support arrangements (e.g. the original company being
acquired, the product becoming not commercially viable etc.).

4. Evidence that the software has been developed to a standard of quality appropriate to the needs of the SKA
Organisation.

5. Documentation that is appropriate to the needs of the SKA Organisation.

4.2. Definition of Done 59

https://opensource.org/licenses/BSD-3-Clause
http://creativecommons.org/licenses/by/4.0/

developer.skatelescope.org Documentation, Release 0.1.0-beta

6. Been approved by the SKA Organisation as to its fitness for purpose and included in a public register of approved
SKA Software.

Standards Applicable to Bespoke Software

Design

This section comprises standards relating to processes described by ISO 12207 [RD1], §7.1.2 (Requirements), §7.1.3
(Architecture) and §7.1.4 (Detailed Design). They complement any general System Engineering level standards (i.e.
processes relating to ISO 15288 [RD2]) applicable to all SKA systems.

All SKA Software that is bespoke software shall have documentation, models and prototypes covering the following:

1. The requirements the software is intended to fulfil.

2. The software architecture used.

a. Notes:

i. The software architecture is the primary deliverable at CDR. Detailed design is only required to the
extent needed for reliable cost estimation.

ii. The recommended reference for architecture documentation is “Documenting Software Architectures:
Views and Beyond, Second Edition” (Clements et al, 2011) [RD3]. This book should be consulted
for best practices on documenting views, styles and interfaces. The ISO 42010 [RD4] standard is also
relevant.

iii. The architecture documentation should include, at minimum

1. System Overview, including a description of the architectural styles used.

2. A set of views describing key features of the architecture, and the mapping between views.

3. Interface Documentation or references to applicable Interface Control Documents for the major
interfaces.

4. Rationale justifying how the architecture meets the requirements. Justification on the basis of
models and evolutionary prototypes is highly recommended in many cases.

5. A consideration as to whether there is any existing software that meets, or can be modified to
meet, the requirements.

iv. Emphasis should be on clear, unambiguous diagrams with accompanying descriptions and tables.

v. Refer to Chapter 11 of Clements et al for a description of interface documentation. Interfaces that are
language or framework specific may be best documented in a format appropriate to that language or
framework (e.g. generated from comments and code in an evolutionary prototype).

3. Detailed design of components.

b. Note:

vi. It is expected that a significant amount of the detailed design may be automatically generated from
code and comments.

vii. Detailed design documentation for FPGA software should include estimates of device utilization
(DSPs, BRAMS, LUTs etc), details of clock rates and clocking domains and tracking of timing closure
issues

The software design should be reviewed and the reviews should incorporate the following factors:

1. The SKA Organisation is responsible for L1 requirements and must agree and review all L2 and L3 requirements.

60 Chapter 4. Development practices followed at SKA

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30386
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30386

developer.skatelescope.org Documentation, Release 0.1.0-beta

2. The SKA Organisation personnel should be involved in software architecture reviews

3. The software architecture should be reviewed to demonstrate that it meets key requirements and provides suffi-
cient detail for cost estimation and implementation.

4. Both the architecture and detailed design reviews shall carefully consider the requirements relating to the long
lifetime of the SKA Observatory. This includes, for example:

a. Portability of the system across multiple architectures and operating systems.

b. Consideration of the life-cycle of all dependencies, including development tools and run-time dependen-
cies.

c. The need for the system to be compatible with version 6 of the Internet Protocol.

d. The careful design of API’s and the need to exchange data by API’s rather than relying on environmental
assumptions about file systems, for example.

5. Detailed design shall be reviewed:

e. By someone in addition to the principal developer of the module being considered.

f. In a manner appropriate to the significance of the module.

i. Note:

1. The significance of the code relates to the impact any changes to the design has on other parts of
the system.

2. The review process must not be overly bureaucratic. Development teams should be empowered
to design and develop the code efficiently and modify the internal design when required.

Construction

This section comprises standards relating to processes described by ISO 12207 (2008) §7.1.5 (Construction).

The construction of all SKA Software which is bespoke software shall include:

1. The construction of all source code shall follow a defined documented process that is approved by the SKA
Organisation.

a. Note:

i. The Software Engineering Institute Personal Software Process and Team Software Process are relevant
processes.

ii. The process documentation shall include a workflow description that follows accepted best practices.
For example, it is recommended that:

1. Work management practices shall include the following:

2. All work tasks shall be described in a ticketing system.

3. Work tickets shall have a description of the task, an estimate of the resource required and amount
of the task that has been completed.

4. All code commits shall relate to a ticket in the ticketing system.

5. The developing organisation shall be able to use the ticketing system to generate progress metrics.

6. Code management practices shall include the following:

7. With the exception of trivial cases (e.g. possibly documentation changes) code must only be
added to or merged with the main development branch by a pull-request-like mechanism.

4.2. Definition of Done 61

developer.skatelescope.org Documentation, Release 0.1.0-beta

8. The pull request (or similar mechanism) must only be accepted after the code has been cleanly
compiled and passes all appropriate tests. This process should be triggered automatically.

9. Pull requests must only be accepted after the code changes have been reviewed by more than one
developer (inclusive of the primary developer).

10. Pull requests must only accepted by suitably qualified individuals.

2. All construction software development shall utilise an SKA Organisation approved version control system.

b. Note:

iii. The SKA Organisation approved version control system is Git.

3. All documentation, source code, software source code, firmware source code, HDL source code, unit tests, build
scripts, deployment scripts, testing utilities and debugging utilities must reside in the version control system.

4. Release tags for code shall adhere to the Semantic Versioning 2.0.0 specification [RD8].

5. Software shall be written in an SKA approved language and adhere to SKA language specific style guides.

c. Note:

iv. The primary approved language shall be Python.

v. The coding standards for Python will be adapted from the LSST DM code style guides [RD7].

vi. Use of other languages must be justified by, for example:

3. Impossibility of running Python in the chosen run-time environment.

4. Python doesn’t provide the necessary performance.

vii. Many other languages are likely to have extensive usage. For example:

5. C/C++ (for high performance computation on conventional CPU’s).

6. Java (e.g. for business logic in web systems and derived software).

7. VHDL (for FPGA development).

8. CUDA (for GPU software).

9. OpenCL (for software that targets both GPU and FPGAs)

10. JavaScript (for Web client systems).

6. SKA Organisation employees must have access to the repository while the software is under development, be
able to sign-up for notifications of commits and, if necessary, give feedback to the developers.

7. Test software verifying the system software at multiple levels (from the complete system down to individual
module unit tests). Tests shall include verifying specific requirements at different levels and, as far as practicable,
be able to be run automatically.

d. Note:

viii. Tests shall be able to run in a continuous integration environment.

ix. For software targeting CPU’s this should include unit tests at the class, function or source file level
to test basic functionality of methods (functions) with an agreed minimal coverage (between 75 and
90%). Unit tests created for fixing defects or making specific enhancements should be checked-in
with a reference to the issue for which the tests were created.

x. For FPGA software this should include:

11. Each module shall be associated with a specific test bench.

12. Modules shall undergo simulation with a predefined pass/fail criteria.

62 Chapter 4. Development practices followed at SKA

https://developer.lsst.io/coding/intro.html

developer.skatelescope.org Documentation, Release 0.1.0-beta

13. Release builds shall be made up of verified functional blocks and handled in a scripted frame-
work.

14. Simulated and released code shall match the committed code. For example, committing the
code shall not change register contents (even version numbers) in the source code.

8. Software simulations/stubs/drivers/mocks for all major interfaces to enable sub-system and system level tests.

9. Automated documentation generation - including, but not limited to parts of detailed design documentation.

e. Note:

xi. Automated documentation generation software is generally off-the-shelf software and so subject
to the conditions in section 4.

xii. Not all documentation can be automatically generated, but it should be used wherever it is reason-
ably practicable.

xiii. The SKA Organisation shall accept ReST format documentation generated using Sphinx.

10. A complete definition of other software (both off-the-shelf and bespoke) that the software requires to build and
deploy.

11. Deployment scripts or configurations, which allow the software to be deployed cleanly and in as automated a
fashion as is practicable, starting with a bare deployment environment.

f. Note:

xiv. For FPGA software, this means configuring an un-programmed FPGA device in the target SKA
system. Deployment may require the use of the host based software delivered as part of the LMC
system.

12. The ability to log diagnostic information using SKA Log Message Format.

13. The ability, dynamically at runtime, to suppress or select logging of messages at different Syslog severity levels
on at least a per-process basis (and a per-thread basis or per class basis if appropriate).

14. The ability to log diagnostics at all major interfaces at a RFC 5424 Debug severity level.

15. Alarms, where applicable, shall be based on the IEC 62682 standard [RD6].

Acceptance and handover

This section comprises standards relating to processes described by ISO 12207 [RD1], §6.4.8 (Acceptance Support),
§7.1.6 (Integration) and §7.1.7 (Qualification).

SKA software which is bespoke software will only be accepted by the SKA Organisation after it has been appropri-
ately integrated and validated.

1. The integration, validation and acceptance of all source code shall follow a defined documented process that is
approved by the SKA Organisation.

2. This process must make clear, for all times during the handover:

a. Who is responsible for making software changes.

b. What the expected turnaround time for software changes is.

3. At the completion of the process all code shall have been:

c. shown to pass appropriate, system, sub-system and unit level tests.

d. shown to cleanly compile and/or build using an SKA Organisation provided build environment.

e. checked into an approved SKA Organisation acceptance repository.

4.2. Definition of Done 63

developer.skatelescope.org Documentation, Release 0.1.0-beta

4. Software shall be integrated, as far as possible, prior to the integration of other aspects of the system.

f. Note:

i. During the SKA construction, this means that it is intended for this to take place in advance of the
SKA Array Release schedule.

ii. The intention is that this will be done by a series of integration “Challenges” which predate inte-
gration at an ITF, and continue through the array release period.

5. During the handover period, there shall be a ‘bug fix’ workflow defined that is streamlined to allow critical fixes
to be deployed quickly.

6. When the SKA Organisation takes over maintenance of the software the complete repository, including commit
history, shall be delivered to the SKA Organisation.

7. Where code requires specialised hardware for testing, provision of this hardware, or demonstrably equivalent
hardware, shall be included as part of the handover.

Support Infrastructure

To develop and integrate software the SKA Organisation shall provide:

1. A central, globally visible, set of repositories that can be used by any SKA developers.

a. Note:

i. These repositories will clearly define how to handle large binary data files.

2. A globally accessible website for the storage and access of documentation.

3. A continuous integration and test framework that is open to use by developers.

b. Note:

ii. It is intended that this will include support for at least the 4 types of bespoke software described in
the scope section (Tango, SDP and NIP data driven software, FPGA software and Web Applica-
tions).

iii. The development of this will be done in conjunction with the pre-construction and construction
consortia. The SKA Organisation will serve as an overall coordinator.

4. Communication tools to enable software developers to access expertise from all the SKA software developer
community.

c. Note:

iv. This will include issue tracking, discussion fora etc.

5. A list of approved off-the-shelf software.

d. Note:

v. To add software to this approved list, please email details of the software, the justification for its
use, and the scope of its usage to the Head of Computing and Software at the SKA Organisation.

vi. The intention of this approved list is to aid standardisation.

Todo:

• Testing Guidelines

• Writing Command-Line Scripts

• C or Cython Extensions

64 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

4.2.3 Python Coding Guidelines

This section describes requirements and guidelines.

Interface and Dependencies

• All code must be compatible with Python 3.5 and later.

• The new Python 3 formatting style should be used (i.e. "{0:s}".format("spam") instead of "%s" %
"spam").

Documentation and Testing

• Docstrings must be present for all public classes/methods/functions, and must follow the form outlined by PEP8
Docstring Conventions.

• Unit tests should be provided for as many public methods and functions as possible, and should adhere to Pytest
best practices.

Data and Configuration

• All persistent configuration should use python-dotenv. Such configuration .env files should be placed at the
top of the ska_python_skeletonmodule and provide a description that is sufficient for users to understand
the settings changes.

Standard output, warnings, and errors

The built-in print(...) function should only be used for output that is explicitly requested by the user, for exam-
ple print_header(...) or list_catalogs(...). Any other standard output, warnings, and errors should
follow these rules:

• For errors/exceptions, one should always use raise with one of the built-in exception classes, or a custom
exception class. The nondescript Exception class should be avoided as much as possible, in favor of more
specific exceptions (IOError, ValueError, etc.).

• For warnings, one should always use warnings.warn(message, warning_class). These get redi-
rected to log.warning() by default.

• For informational and debugging messages, one should always use log.info(message) and log.
debug(message).

Logging implementation

There is a standard Python logging module for logging in SKA projects. This module ensures that messages are
formatted correctly according to our formatting standards.

For details on how to use the logging module with detailed examples, please refer to: https://gitlab.com/ska-telescope/
ska-logging/tree/master#ska-logging-configuration-library

4.2. Definition of Done 65

https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://docs.pytest.org/en/latest/goodpractices.html
https://docs.pytest.org/en/latest/goodpractices.html
https://github.com/theskumar/python-dotenv
https://gitlab.com/ska-telescope/ska-logging
https://gitlab.com/ska-telescope/ska-logging/tree/master#ska-logging-configuration-library
https://gitlab.com/ska-telescope/ska-logging/tree/master#ska-logging-configuration-library

developer.skatelescope.org Documentation, Release 0.1.0-beta

Coding Style/Conventions

• The code will follow the standard PEP8 Style Guide for Python Code. In particular, this includes using only 4
spaces for indentation, and never tabs.

• The import numpy as np, import matplotlib as mpl, and import matplotlib.pyplot
as plt naming conventions should be used wherever relevant. from packagename import * should
never be used, except as a tool to flatten the namespace of a module. An example of the allowed usage is given
in Acceptable use of from module import *.

• Classes should either use direct variable access, or Python’s property mechanism for setting object instance
variables. get_value/set_value style methods should be used only when getting and setting the values
requires a computationally-expensive operation. Properties vs. get_/set_ below illustrates this guideline.

• Classes should use the builtin super() function when making calls to methods in their super-class(es) unless
there are specific reasons not to. super() should be used consistently in all subclasses since it does not work
otherwise. super() vs. Direct Calling illustrates why this is important.

• Multiple inheritance should be avoided in general without good reason.

• __init__.py files for modules should not contain any significant implementation code. __init__.py can
contain docstrings and code for organizing the module layout, however (e.g. from submodule import *
in accord with the guideline above). If a module is small enough that it fits in one file, it should simply be a
single file, rather than a directory with an __init__.py file.

Unicode guidelines

For maximum compatibility, we need to assume that writing non-ASCII characters to the console or to files will not
work.

Including C Code

• When C extensions are used, the Python interface for those extensions must meet the aforementioned Python
interface guidelines.

• The use of Cython is strongly recommended for C extensions. Cython extensions should store .pyx files in the
source code repository, but they should be compiled to .c files that are updated in the repository when important
changes are made to the .pyx file.

• In cases where C extensions are needed but Cython cannot be used, the PEP 7 Style Guide for C Code is
recommended.

Examples

This section shows examples in order to illustrate points from the guidelines.

Properties vs. get_/set_

This example shows a sample class illustrating the guideline regarding the use of properties as opposed to getter/setter
methods.

Let’s assuming you’ve defined a ':class:`Star`' class and create an instance like this:

>>> s = Star(B=5.48, V=4.83)

66 Chapter 4. Development practices followed at SKA

https://www.python.org/dev/peps/pep-0008/
https://docs.python.org/3/library/functions.html#super
https://docs.python.org/3/library/functions.html#super
https://cython.org/
https://cython.org/
https://cython.org/
https://www.python.org/dev/peps/pep-0007/

developer.skatelescope.org Documentation, Release 0.1.0-beta

You should always use attribute syntax like this:

>>> s.color = 0.4
>>> print(s.color)
0.4

Using Python properties, attribute syntax can still do anything possible with a get/set method. For lengthy or complex
calculations, however, use a method:

>>> print(s.compute_color(5800, age=5e9))
0.4

super() vs. Direct Calling

By calling super() the entire method resolution order for D is precomputed, enabling each superclass to coopera-
tively determine which class should be handed control in the next super() call:

This is safe

class A(object):
def method(self):

print('Doing A')

class B(A):
def method(self):

print('Doing B')
super().method()

class C(A):
def method(self):

print('Doing C')
super().method()

class D(C, B):
def method(self):

print('Doing D')
super().method()

>>> d = D()
>>> d.method()
Doing D
Doing C
Doing B
Doing A

As you can see, each superclass’s method is entered only once. For this to work it is very important that each method
in a class that calls its superclass’s version of that method use super() instead of calling the method directly. In the
most common case of single-inheritance, using super() is functionally equivalent to calling the superclass’s method
directly. But as soon as a class is used in a multiple-inheritance hierarchy it must use super() in order to cooperate
with other classes in the hierarchy.

Note: For more information on the the benefits of super(), see https://rhettinger.wordpress.com/2011/05/26/
super-considered-super/

4.2. Definition of Done 67

https://docs.python.org/3/library/functions.html#super
https://docs.python.org/3/library/functions.html#super
https://docs.python.org/3/library/functions.html#super
https://docs.python.org/3/library/functions.html#super
https://rhettinger.wordpress.com/2011/05/26/super-considered-super/
https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

developer.skatelescope.org Documentation, Release 0.1.0-beta

Acceptable use of from module import *

from module import * is discouraged in a module that contains implementation code, as it impedes clarity and
often imports unused variables. It can, however, be used for a package that is laid out in the following manner:

packagename
packagename/__init__.py
packagename/submodule1.py
packagename/submodule2.py

In this case, packagename/__init__.py may be:

"""
A docstring describing the package goes here
"""
from submodule1 import *
from submodule2 import *

This allows functions or classes in the submodules to be used directly as packagename.foo rather than
packagename.submodule1.foo. If this is used, it is strongly recommended that the submodules make use
of the __all__ variable to specify which modules should be imported. Thus, submodule2.py might read:

from numpy import array, linspace

__all__ = ['foo', 'AClass']

def foo(bar):
the function would be defined here
pass

class AClass(object):
the class is defined here
pass

This ensures that from submodule import * only imports ':func:`foo' and ':class:`AClass', but
not ':class:`numpy.array' or ':func:`numpy.linspace'.

Acknowledgements

The present document’s coding guidelines are derived from project Astropy’s codding guidelines.

4.2.4 SKA Javascript Coding Guidelines

Prerequisites:

As a javascript developer you will need the following:

• An account on GitHub

• Access to the SKA github account (https://github.com/ska-telescope)

• Access to git (e.g. Git Bash if on Windows environment (https://gitforwindows.org/)

• Access to node and the node package manager (npm)

68 Chapter 4. Development practices followed at SKA

http://docs.astropy.org/en/stable/development/codeguide.html
https://github.com/ska-telescope
https://gitforwindows.org/

developer.skatelescope.org Documentation, Release 0.1.0-beta

Setting up a new web project

Each new web project should start by creating a new SKA GitHub project as a fork of the ska-telescope/ska-react-
webapp-skeleton project.

• The readme file will need updated to reflect the nature of the new web project

Conventions

JavaScript has many code style guides. For the SKA Projects we have settled on the AirBnB JavaScript Style Guide.
Any differences to what is presented by AirBnB should be documented here:

As a developer it is worth familiarizing yourself with the AirBnB guide above, and some of the background reading
that they suggest.

File Suffixes

• Use .jsx for any file which contains JSX, otherwise use .js

• Test files should be prefixed .test.{js|jsx}

Code structure

Within each project code should be grouped by features or routes. This is based on the React guidance at https:
//reactjs.org/docs/faq-structure.html

Locate CSS, JS, and tests together inside folders grouped by feature or route.

components/
App/

App.css
App.jsx
App.test.jsx

NavBar/
NavBar.css
NavBar.jsx
NavBar.test.jsx

The definition of a “feature” is not universal, and it is up to you to choose the granularity. If you can’t come up with
a list of top-level folders, you can ask the users of your product what major parts it consists of, and use their mental
model as a blueprint.

Linting

The react web skeleton project comes with ESLint and Prettier support already configured to support the AirBnB style
guide rules. We suggest that whenever possible you verify your code style and patterns in your editor as you code.

Instructions for how to install plugins to support this do this for Visual Studio (VS Code) and JetBrains (WebStorm,
IntelliJ IDEA etc.) are include in the ska-react-webapp-skeleton readme file.

4.2. Definition of Done 69

https://github.com/airbnb/javascript/
https://reactjs.org/docs/faq-structure.html
https://reactjs.org/docs/faq-structure.html

developer.skatelescope.org Documentation, Release 0.1.0-beta

Dependencies

• The use of node and npm is assumed for package management. All packages and dependencies required to build
and run the code should be defined in the package.json. for the project.

• Avoid relying on any the installation of any global packages to run or build the code.

• Take care to differentiate between dependencies and devDependencies when installing packages. The ‘depen-
dencies’ section should only include the dependencies required to run the code. The devDependencies should
be used for any packages required to build, test or to deploy the code.

• Only install packages for a reason. Adding any new third party dependency should be a team decision, and
preferably discussed with the system team.

• Remove unused packages

• Prefer popular packages. Sites such as https://www.npmjs.com/search and https://npms.io can be used to get an
analysed ranking, as well as checking out the number of stars on github.

• Prefer packages with a good coverage of working tests provided

• Any 3rd party packages used should be compatible with the SKA BSD-3 Licence terms.

When developing packages and modules either for your own project or for sharing with other SKA javascript teams.

• Prefer smaller modules with a coherent closely related purpose

• Prefer files with a single named export where possible

• Ensure all imports use the same names for exports as used in the file where the export is defined.

• Avoid default exports or imports.

Named exports (and using the same names consistently throughout the code) make life easier for anyone using your
code.

Having a name makes it possible for IDEs to find and import dependencies for you automatically. For a good perspec-
tive on this read: https://humanwhocodes.com/blog/2019/01/stop-using-default-exports-javascript-module/

Documentation and Testing

• All external interfaces should be fully documented.

• All code should be well commented. As a minimum any method used outside the file in which it is written
should be documented following standard JSDoc conventions.

• Working unit tests should exist for as much code as possible. At a minimum all code developed or modified
within the SKA Project should have working tests (see the definition of done above. We are currently aiming at
+75% code coverage for all web projects.

Data and Configuration Files

• Use proxies and relative paths where possible. Avoid hard coded URLs. Any explicit paths should be de-
rived from a consistent configuration source. (See for example https://facebook.github.io/create-react-app/docs/
proxying-api-requests-in-development#configuring-the-proxy-manually

70 Chapter 4. Development practices followed at SKA

https://www.npmjs.com/search
https://npms.io
https://humanwhocodes.com/blog/2019/01/stop-using-default-exports-javascript-module/
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually

developer.skatelescope.org Documentation, Release 0.1.0-beta

Console output, warnings and errors

• Use the debugger rather than console statements.

• Remove all console statements when done. Production code should not contain any console statements.

Note: Futher discussion on firmware development process, continuous integration, automated testing and recommen-
dations for best practices can be found in the following google doc. This document will be gradully implemented and
the resulting decision will for part of this developer portal.

https://docs.google.com/document/d/1Kfc_4vLUy-0pSbi9HVeEkAmhuvEIEnt4voFnXxsc0zM/edit?usp=sharing

4.2.5 VHDL Coding Style Guidelines

Following a coding style is an integral part of robust development. It should not be a burden, and something done
afterwards to pass code review – it should be done continuously at all stages of code development. A clean coding
style is desired. This allows other team members (and yourself in a month or a year) to read and digest your code
quickly, and to use the code with a high confidence in its correctness.

The VHDL coding guidelines developed and published by ALSE are excellent, and will form the basis of this coding
guideline. They are available from their website:

http://www.alse-fr.com/VHDL-Coding-Guide.html

and as a pdf:

http://www.alse-fr.com/sites/alse-fr.com/IMG/pdf/vhdl_coding_v4_eng.pdf.

The following numbered additions/modifications/clarifications are used:

The VHDL-2008 standard will be used, so far as its features are supported by synthesis and simulation tools. Synthesis
tools’ support for VHDL-2008 features has improved to a level where its usage can result in simpler, less verbose, and
more descriptive code.

P_11) VHDL keywords shall be in lower case. Use an editor with syntax highlighting.

N_8) Active low signals should be avoided. In preference signals should be named to make them active high (positive
logic). If no such obvious name can be found then active low signal names should have the suffix _n. For example the
following are equivalent:

tx_disable == tx_enable_n.

Note that in VHDL 2008, operators can be applied in port maps. So conversion can be applied without having to create
an intermediate signal (and hence specify a name for it). For example:

E_EXT_MOD : entity extern_lib.module
port map (...

i_tx_enable_n <= not tx_enable,
...);

N_9) When ports of mode ‘out’ need to be accessed internally, the derived internal signals shall be named using <out
port name>_i (for example o_outbus_i being the internally accessible signal from which the output port o_outbus is
directly derived. However, in VHDL-2008 the output port can be accessed directly making this irrelevant.

N_10) Use instance names derived from the entity names. Prefix E_ should be used to identify the direct instantiation
of the entity, and C_ for instantiation from a component declaration. The label shall be in all upper case. For example:

4.2. Definition of Done 71

https://docs.google.com/document/d/1Kfc_4vLUy-0pSbi9HVeEkAmhuvEIEnt4voFnXxsc0zM/edit?usp=sharing
http://www.alse-fr.com/VHDL-Coding-Guide.html
http://www.alse-fr.com/sites/alse-fr.com/IMG/pdf/vhdl_coding_v4_eng.pdf

developer.skatelescope.org Documentation, Release 0.1.0-beta

E_FIR16X8 : entity work.fir16x8 port map (etc...
C_FIR16X8 : fir16x8 port map (etc...

If there are multiple instances then instance names should have a descriptor appended that adds information. Avoid
simply appending a number (consider using a generate loop instead). For example:

E_EMIF_BOTTOM_RIGHT : entity work.external_memory_interface port map (...
E_EMIF_TOP_LEFT : entity work.external_memory_interface port map (...
E_EMIF_TOP_RIGHT : entity work.external_memory_interface port map (...

N_14) Names for clock and reset signals shall conform to the following convention:

• Clocks: <name>_clk

• Reset: <name>_clk_<reset_name>_rst (active high reset, synchronised to <name>_clk)

• Reset: <name>_clk_<reset_name>_rst_n (active low reset, synchronised to <name>_clk)

<name> should be shared with the signals in the clock’s domain.

An entity with a single clock, should have the input clock i_clk, and with a single active high synchronous reset
i_clk_rst.

N_15) Constants shall use the c_ prefix, and the name be capitalised, for example:

constant c_BYTE_WIDTH : natural := 8;

N_11) Generics shall use the g_ prefix, and the name be capitalised, for example:

generic (g_BLOCK_LENGTH : natural := 256);

N_12) Variables shall use the v_ prefix, for example:

variable v_sum : unsigned(7 downto 0);

N_13) Process labels shall use the P_ prefix, and be capitalised for example:

P_DO_READ : process(i_clk)
Begin

if rising_edge(i_clk) then
...

end if;
end process P_DO_READ;

N_12) Generate labels should use the G_ prefix, and be capitalised, for example:

G_USE_BUFFER : if not g_SIM generate
-- instantiate buffer module

else generate
-- default signal assignments

end generate G_USE_BUFFER;
G_EACH_DATA : for idx in 0 to g_DATA_WIDTH-1 generate

-- assignments/instantiations for each bit in the data.
end generate G_EACH_DATA;

C_6a) Allow numeric_std version of unsigned and signed types in ports. This increases the information in port
description, giving meaning to the bit vector that is not available when declared as a std_logic_vector.

72 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

4.2.6 C++ Coding Guidelines

This section describes requirements and guidelines for development and testing of a new C++ project on GitLab.
The Continuous Integration tools are GitLab specific - but most of the processes could be easily moved to a Jenkins
Pipeline if required.

Table of Contents

• C++ Coding Guidelines

– An Example C++ Project

* Project Layout

· Top Level

· CMakeLists.txt

· LICENSE

· README.md

· src

· version.txt

· The Source Tree

· What To Do With Namespaces

· Headers

· Design Patterns

· Unit Test Locations

* Continuous Integration

· Building The Project

· The Image

· CMake for Beginners

· CMake Coding Conventions

· The SKA CMake Module Repository

· Including the version number

· Including External Projects

· Dependencies

* Coding Style & Conventions

* Unit testing

· Setting Up The Tests

· How GitLab Can Use The Results

* Pages (or Publishing Artifacts)

– Summary

4.2. Definition of Done 73

developer.skatelescope.org Documentation, Release 0.1.0-beta

An Example C++ Project

We have created a skeleton C++ project. Which should provide a full introduction to the various recommendations and
requirements for the development of C++. The philosophy behind the development of this template was to demonstrate
one way to meet the project guidelines. There are probably as many ways to organise C++ projects as there are
developers there are sure to be some controversial design decisions made.

This projects demonstrates a recommended project layout. It also demonstrates how to implement the following
recommended C++ project development features.

• Continuous integration (CI) setup using Gitlab

• CMake as a build tool.

• GoogleTest framework and example unit testing.

• C++ linting using clang for stylistic errors.

• Also test running under valgrind for memory errors.

• gcov to measure test coverage

All building and testing is done within a docker container.

Project Layout

Top Level

We have a top level of the project containing:

CMakeLists.txt

We have built this template using CMake. The structure of this file will be discussed in Building the
Project.

LICENSE

All projects must have a license. We have include the recommended BSD 3 clause license template please
fill it in.

README.md

Should at the very least provide a brief description, installation instructions, pre-requisites

src

This is the top of the source tree. It does not have to be called src. But we recommend that the source tree
has its head here. The first namespace being the level below this one.

74 Chapter 4. Development practices followed at SKA

https://gitlab.com/ska-telescope/cpp_template

developer.skatelescope.org Documentation, Release 0.1.0-beta

version.txt

In this template the version file is parsed by the CMakeLists file during the build process. This specific
functionality is not required, but clear versioning is. The SKA project mandates Semantic Versioning.

The Source Tree

Our recommended source tree structure follows:

.
CMakeLists.txt
LICENSE
README.md
cmake

HelloWorldConfig.cmake.in
dependencies.txt
examples

helloworld-user
external

cmake-modules
gtest-1.8.1

src
apps
ska

version.txt

9 directories, 6 files

A number of design decisions have been made here:

What To Do With Namespaces

The directory structure follows the namespaces. We have defined an uppermost ska namespace and require all projects
providing specfic ska functionality do the same. We have also defined a nested namespace and the directory structure
follows in kind. This allows code to be grouped together easily by namespace. Also the installation assumes this
structure. Therefore headers are included using their full namespaces. This avoids pollution of the install tree.

Headers

Header (.h) files are included with and template definitions (.tcc) and implementation files (.cpp). We have done this
to make it easier to navigate the source tree. Having a separate include tree adds unnecessary complexity.

Design Patterns

We recommend that project follow design patterns where applicable. The example class structure follows the Pimpl
construction design pattern but there are many others. This has an abstract base class hello and a derived class wave
which is a type of hello, but we are also including an implementation of a wave. We have done this as this scheme
allows multiple implementations of a wave to be created without forcing a recompilation of every source file that
includes wave.h. Some example patterns for different use cases can be found in this article.

4.2. Definition of Done 75

https://semver.org
https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns

developer.skatelescope.org Documentation, Release 0.1.0-beta

Unit Test Locations

Tests are co-located at the namespace level of the classes that they test. Another scheme would be to have a separate
branch from the top level that maintains the same directory structure. We prefer this scheme for the same reasons as
we prefer to colocate the headers and the implementation. Plus anything that promotes the writing of unit tests at the
same time as the classes are developed is a good thing

Todo: What about functional tests

Continuous Integration

GitLab manages builds via a YAML file held inside your repository. Similar to a Jenkinsfile in philosophy. This is the
file in the skeleton HelloWorld project.

This file is a template, and might need editing before it works on your project.
use the official gcc image, based on debian
can use verions as well, like gcc:5.2
see https://hub.docker.com/_/gcc/
#
This base image is based on debian:buster-slim and contains:
* gcc 8.3.0
* clang 7.0.1
* cmake 3.13.4
* and more
#
For details see https://github.com/ska-telescope/cpp_build_base
#
image: nexus.engageska-portugal.pt/ska-docker/cpp_build_base

variables:
Needed if you want automatic submodule checkout
For details see https://docs.gitlab.com/ee/ci/yaml/README.html#git-submodule-

→˓strategy
GIT_SUBMODULE_STRATEGY: normal

.common: {tags: [engageska, docker]}

stages:
- build
- linting
- test
- pages

build_debug:
extends: .common
stage: build
instead of calling g++ directly you can also use some build toolkit like make
install the necessary build tools when needed
script:
- mkdir build
- cd build
- cmake .. -DCMAKE_BUILD_TYPE=Debug -DCMAKE_CXX_FLAGS="-coverage" -DCMAKE_EXE_

→˓LINKER_FLAGS="-coverage"
- make

(continues on next page)

76 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

artifacts:
paths:

- build

build_release:
extends: .common
stage: build
script:
- mkdir build
- cd build
- cmake .. -DCMAKE_BUILD_TYPE=Release
- make

artifacts:
paths:

- build

build_export_compile_commands:
extends: .common
stage: build
script:

- rm -rf build && mkdir build
- cd build
- cmake .. -DCMAKE_BUILD_TYPE=Debug -DCMAKE_EXPORT_COMPILE_COMMANDS=ON -DCMAKE_

→˓CXX_COMPILER=clang++
artifacts:

paths:
- build

lint_clang_tidy:
extends: .common
stage: linting
dependencies:
- build_export_compile_commands

script:
- cd build
- run-clang-tidy -checks='cppcoreguidelines-*,performance-*,readibility-*,

→˓modernize-*,misc-*,clang-analyzer-*,google-*'

lint_iwyu:
extends: .common
stage: linting
dependencies:
- build_export_compile_commands

script:
- cd build
- iwyu_tool -p .

lint_cppcheck:
extends: .common
stage: linting
dependencies:
- build_export_compile_commands

script:
- cd build
- cppcheck --error-exitcode=1 --project=compile_commands.json -q --std=c++14 -i

→˓$PWD/../external -i $PWD/../src/ska/helloworld/test

(continues on next page)

4.2. Definition of Done 77

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

test:
extends: .common
stage: test
dependencies:
- build_debug

script:
- cd build
- ctest -T test --no-compress-output

after_script:
- cd build
- ctest2junit > ctest.xml

artifacts:
paths:

- build/
reports:

junit: build/ctest.xml

test_installation:
extends: .common
stage: test
dependencies:
- build_release

script:
- cd build
- cmake . -DCMAKE_INSTALL_PREFIX=/opt
- make install
- cd ../examples/helloworld-user
- mkdir build
- cd build
- cmake .. -DCMAKE_PREFIX_PATH=/opt
- make all

A job that runs the tests under valgrid
It might take a while, so not always run by default
test_memcheck:

extends: .common
stage: test
dependencies:
- build_debug

before_script:
- apt update && apt install -y valgrind

script:
- cd build
- ctest -T memcheck

only:
- tags
- schedules

pages:
extends: .common
stage: pages
dependencies:
- test

script:
- mkdir .public
- cd .public
- gcovr -r ../ -e '.*/external/.*' -e '.*/CompilerIdCXX/.*' -e '.*/tests/.*' --

→˓html --html-details -o index.html (continues on next page)

78 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

- cd ..
- mv .public public

artifacts:
paths:

- public

We have four stages of the CI

• build

• lint

• test

• pages

These stages are automatically run by the GitLab runners when you push to the repository. The pipeline halts and you
are informed if any of the steps fail. There are some subtleties in the way the test results and test coverage are reported
and we deal with them below as we go through the steps in more detail.

Building The Project

Todo: Need to add some CMake Coding Conventions

The Image

We recommend building using the cpp_base image that we have developed and stored in the image repository. This,
or an image derived from it contains all the tools required to operate this CI pipeline and you should avoid the pain of
installing and configuring system tools.

CMake for Beginners

We recommend using CMake as a build tool. It is widely used, includes the ability to generate buildfiles for different
development environments. This allows developers the freedom to use whatever IDE they would like (e.g. Eclipse and
Xcode) from the same CMake files.

The CMake application parses the CMakeLists.txt file and generates a set of build scripts. An important element of the
CMake philosophy is that you can build the application out-of-place, thereby supporting multiple build configurations
from the same source tree.

This is the top level CMakeLists.txt file

cmake_minimum_required(VERSION 3.5)

file(STRINGS version.txt HelloWorld_VERSION)
message(STATUS "Building HelloWorld version ${HelloWorld_VERSION}")

Project configuration, specifying version, languages,
and the C++ standard to use for the whole project
project(HelloWorld LANGUAGES CXX VERSION ${HelloWorld_VERSION})
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

(continues on next page)

4.2. Definition of Done 79

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

include(CTest)

External projects
if (BUILD_TESTING)

add_subdirectory(external/gtest-1.8.1 googletest)
installed as git submodule - if this is your first clone you need to
git submodule init
git submodule update
This is a cmake module and needs no further input from you
endif()

add_subdirectory(src)

This file defines the project, but the actual applications and libraries are found futher down the tree. An example
CMake file in the template that is used to build the executeable is

add the executable
add_executable (HelloWorld hello_world.cc)
target_link_libraries (HelloWorld HelloClasses)

install (TARGETS HelloWorld DESTINATION bin)

add_test(NAME HelloWorldExec COMMAND HelloWorld)

There are a number of beginner CMake tutorials on the web. The following commands should be all you need to build
the HelloWorld project on your system.

>cd cpp_template

For an out-of-place build you make your build directory. This can be anywhere

> mkdir build
> cd build

Then you run cmake - you control where you want the installation to go by setting the install prefix. But you also need
to point cmake to the directory containing your top level CMakeLists.txt file

> cmake -DCMAKE_INSTALL_PREFIX=my_install_dir my_source_code

CMake then runs, first attempting to resolve all the compile time dependencies that the project defines. Note you do
not have to generate Makefiles, CMake alos supports XCode and Eclipse projects. Checkout the CMake manpage for
the current list.

After the build files have been generated you are free to build thr project. With the default Makefiles, you just need:

>make install

If you are using Eclipse or XCode you will have to start the build within your environment.

Withing the CI/CD control file above you can see that we invoke CMake with different BUILD_TYPES these add
specific compiler flags. Please see the cmake documentation for more information.

80 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

CMake Coding Conventions

Unfortunately there is even less consensus in the community as to the most effective way to write CMake files, thought
there are a lot of opinions. We have found a good distillation of some effective ideas can be found here. And GitLab
has an introduction to Modern CMake.

In general however we recommend Modern CMake (minimum version of 3.0). A lot of legacy projects will have used
2.8 - but we cannot recommend that new projects use this. It is no longer maintained and does not contain many
features of modern (v3+ CMake). As far as we are aware CMake v3.0 is backward compatible with 2.8, so if you are
onboarding code that uses 2.8 we strongly suggest you upgrade.

Todo: Maybe add some more advice? use targets not global settings etc . . .

The SKA CMake Module Repository

We recommend you include the CMake Module Repository as a git submodule.

> cd external
> git submodule add https://gitlab.com/ska-telescope/cmake-modules.git
> cd <project_root>
> git add .gitmodules

There are two issues with submodules that should be made clear.

1) When you clone your repository you do not get your submodules - in order to populate them you have to:

>git submodule sync
>git submodule update --init

2) The commit of the submodule that was originally added to the repository is the one that you get when you
clone your parent. You can work on the submodule and push if you want. But the main project will only pick
up the changes via the .gitmodule directory. Note that GitLab automates this process for CI/CD builds using the
GIT_SUBMODULE_STRATEGY: normal.

This directory is linked into the CMake search path by adding:

> set(CMAKE_MODULE_PATH "${CMAKE_SOURCE_DIR}/external/cmake-modules")

to the top-level CMakeLists.txt.

This directory will be searched ahead of the CMake system installation for Find<Package>.cmake files. This will
allow the sharing for MODULE and CONFIG files for common packages

Including the version number

There is a template configuration file that demonstrates how to pull in the version number into the code base. We do
this in a few steps. First the Semantic Version number is held in plain text in version.txt. This is done so that it is easy
to “bump” the version number on code changes. The second stage is the the CMakeLists.txt file reads this file and
creates an internal version number using its contents. Finally the configuration file is used to generate a header file
containing the version number that can be included by the code.

4.2. Definition of Done 81

https://gist.github.com/mbinna/c61dbb39bca0e4fb7d1f73b0d66a4fd1
https://cliutils.gitlab.io/modern-cmake/

developer.skatelescope.org Documentation, Release 0.1.0-beta

Including External Projects

We have including the GoogleTest framework as an external project, instead of a dependency to demonstrate one way
to use external projects that you want, or need to build from source. Most dependencies will not need to be built or
included this way. The typical method in CMake is to use its find_package() functionality to track down the location of
a dependency installed locally. Note that there is no common or standard way of installing dependencies automatically.

Dependencies

As there is no standard we propose that for clarity any external packages that you require be listed in a dependencies.txt
file the format of entries is this file is defined here to follow the format of the CMake find_package() method i.e.

[install | find | both] <package> [version] [EXACT] [QUIET] [MODULE] [REQUIRED]
→˓[[COMPONENTS] [components...]] [OPTIONAL_COMPONENTS components...] [NO_POLICY_
→˓SCOPE])

for example

find cfitsio REQURIED

Except for the initial prefix (install, find or both) the other [] are optional, and are passed directly to the find_package()
cmake function.

We have added a dependencies.cmake function that will attempt to find all the dependencies listed using the
find_package() functionality of CMake. Of course if the build depends upon an external dependency that is not
present in the build image, automated CI will fail.

Todo: To avoid this we will add other macros to install the external dependencies using a package management tool.
When one is downselected.

Therefore package-name is prefixed by one of install, find, or both.

• install is used as a keyword so you can parse the file for packages to install (using apt for example),

• find is used as a keyword for the dependencies function to use the find_package() functionality. It is possible,
indeed likely that the package name for apt and for the cmake module will not be the same. Hence the separate
keywords

• both for the case where the package has the same name for both the install tool and the cmake module.

Prior to defining a specific dependencies tool, and as apt does not take a list file as an argument, you could use
something like this to parse the contents of the file and install the requirements.

> cat dependencies.txt | grep -E '^install|^both' | awk '{print $2}' | xargs sudo apt-
→˓get

Todo: Should such a line to the CI pipeline for the installation of cfitsio as an example, together with a Findcfit-
sio.cmake module in the ska cmake-modules repository.

82 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

Coding Style & Conventions

We are not advocating that software be restructured and rewritten before on-boarding - However we recommend that
new software follow The cplusplus Core Guidelines.

The clang/llvm compiler tools have an extension which can provide some direct criticism of your code for stylistic
errors (and even automatically fix them). For example in our lint step we suggest you run:

run-clang-tidy -checks='cppcoreguidelines-*,performance-*,readibility-*,modernize-*,
→˓misc-*,clang-analyzer-*,google-*'

Note: The GoogleTest macros generate a lot of warnings . . . Google have their own code guidelines . . .

In the linting stage we also run cppcheck as a separate step.

Warning: The linting stage as presented here is spotting an error in the GTest macros. So we have explicitly
removed the test directory from the cppcheck path.

Unit testing

Setting Up The Tests

Within the template we give examples of how to write a Unit Test in The Google Test framework.

You will also see from the CI script that we publish the test results in the following manner:

stage: test
dependencies:

- build_debug
script:

- cd build
- ctest -T test --no-compress-output

after_script:
- cd build
- ctest2junit > ctest.xml

artifacts:
paths:
- build/

reports:
junit: build/ctest.xml

How GitLab Can Use The Results

The above directives publish the results to the GitLab JUnit test plugin, but the system is very minimal. Primarily
it is used in examining merge requests. When you push to the GitLab repo your branch is built. On completion the
test reqults are compared if tests fail you are warned, if they pass you are notified. For example. I have created a test
branch for the repo that contains a new derived instance of an hello world. I have included a test and I checked locally
that all the existing code built - after the merge request is started GitLab gives the following report:

4.2. Definition of Done 83

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://github.com/google/googletest/

developer.skatelescope.org Documentation, Release 0.1.0-beta

You can see that there is not much detail - but the tests results are parsed and any differences are noted.

Pages (or Publishing Artifacts)

We use this step to run the test coverage tool gcov, and to publish the results:

stage: pages
dependencies:

- test
script:

- mkdir .public
- cd .public
- gcovr -r ../ -e '.*/external/.*' -e '.*/CompilerIdCXX/.*' -e '.*/tests/.*' --html

→˓--html-details -o index.html
- cd ..
- mv .public public

artifacts:
paths:
- public

Note that the atifacts step this allows the results to be accessed via the pipelines pages. Every build stores its artifacts
from the test step and the pages step.

Note: As far as we know there is no plugin for the coverage artifacts generated by gcov

84 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

But you can access the artifact from the pipeline.

Summary

This basic template project is available on GitLab. And demonstrates the following:

1) Provides a base image on which to run C++ builds

2) Describes example basic dependency management is possible at least based on CMake but way of CMake
External projects and git submodules

3) Presents a convention for defininig third party/external to project libs such that they are independent of the
dependency management layer that will be supported by the systems team.

4) Proposes a C++ 14 language standard and related static code checking tools

5) Outlines header naming conventions that follow namespace definitions

6) Proposal of GoogleTest for a common C++ unit testing library

4.2.7 Containerisation Standards

This section describes a set of standards, conventions and guidelines for building, integrating and maintaining container
technologies.

Table of Contents

• Containerisation Standards

– Overview of Standards

– Cheatsheet

– Structuring applications in a Containerised Environment

* How does containerisation work

* Container Image

* Network Integration

* Storage Integration

* Structuring Containerised Applications

– Defining and Building Container Images

* The Image

· Image Definition Syntax

4.2. Definition of Done 85

https://gitlab.com/ska-telescope/cpp-template.git

developer.skatelescope.org Documentation, Release 0.1.0-beta

· Build Context

· Minimise Layers

· Multi-stage Builds

· Encapsulation of Data with Code

· Base Images

· Reduce Image Size

· RUN and packages

· Ordering

· Labels

· Arguments

· Environment Variables

· ADD or COPY + RUN vs RUN + curl

· USER and WORKDIR

· ENTRYPOINT and CMD

· ONBUILD and the undead

* Naming and Tagging

* Image Tools

* Development tools

* Image Storage

· Image signing and Publishing

– Running Containerised Applications

* Container Resources

· Storage

· Network

· Permissions

· Configuration

· Memory and CPU

* Service Discovery

* Standard input, output, and errors

* Logging

* Sharing

• Container Standards CheatSheet

– Structuring applications in a Containerised Environment

– Defining and Building Container Images

– Naming and Tagging

86 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

– Image Signing and Publishing

– Running Containerised Applications

– Logging

Overview of Standards

These standards, best practices and guidelines are based on existing industry standards and tooling. The main refer-
ences are:

• Docker v2 Registry API Specification.

• Dockerfile best practices.

• Container Network Interface.

• Container Storage Interface.

• Open Container Initiative image specification.

• Open Container Initiative run-time specification.

The standards are broken down into the following areas:

• Structuring applications in a containerised environment - general guidelines for breaking up application suites
for running in a containerised way

• Defining and building container images - how to structure image definitions, and map your applications onto the
image declaration

• Running containerised applications - interfacing your application with the container run time environment

Throughout this documentation, Docker is used as the reference implementation with the canonical version being
Docker 18.09.4 CE API version 1.39, however the aim is to target compliance with the OCI specifications so it is
possible to substitute in alternative Container Engines, and image build tools that are compatible.

Cheatsheet

A Container Standards CheatSheet is provided at the end of this document as a quick guide to standards and conven-
tions elaborated on throughout this document.

Structuring applications in a Containerised Environment

How does containerisation work

Containerisation is a manifestation of a collection of features of the Linux kernel and OS based on:

• Capabilities (CAPS) - POSIX 1003.1e capabilities - predate namespaces, but genesis for Linux unknown -
approximately Kernel 2.2 onwards

• Cgroups - introduced in January 2008

• File-system magic - such as pivot_root, and bind mounting first appeared in Linux 2.4 - circa 2001

• Namespaces - introduced in 2002

4.2. Definition of Done 87

https://docs.docker.com/registry/spec/api/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://github.com/containernetworking/cni
https://github.com/container-storage-interface/spec
https://github.com/opencontainers/image-spec/releases/tag/v1.0.0
https://github.com/opencontainers/runtime-spec/releases/tag/v1.0.0
https://docs.docker.com/
https://wiki.archlinux.org/index.php/capabilities
https://en.wikipedia.org/wiki/Cgroups
https://linux.die.net/man/8/pivot_root
https://unix.stackexchange.com/questions/198590/what-is-a-bind-mount
https://lwn.net/Articles/690679/
https://en.wikipedia.org/wiki/Linux_namespaces

developer.skatelescope.org Documentation, Release 0.1.0-beta

These features combine to give a form of lightweight virtualisation that runs directly in the host system Kernel of
Linux, where the container is typically launched by a Container Engine such as Docker.

Namespaces create the virtualisation effect by switching the init process (PID 1) of a container into a separate names-
pace of the Kernel for processes, network stacks and mount tables so as to isolate the container from all other running
processes in the Kernel. Cgroups provide a mechanism for controlling resource allocation eg: Memory, CPU, Net,
and IO quotas, limits, and priorities. Capabilities are used to set the permissions that containerised processes have
for performing system calls such as IO. The file-system magic performed with pivot_root recasts the root of the file-
system for the container init process to a new mount point, typically the root of the container image directory tree.
Then, bind mounting enables sharing file-system resources into a container.

Fig. 1: The basic anatomy of a container and how it interfaces with host at run time.

Container Image

The Linux Kernel features make it possible for the container virtualisation to take place in the Kernel, and to have con-
trols placed on the runtime of processes within that virtualisation. The container image is the first corner stone of the
software contract between the developer of a containerised application and the Container Engine that implements the
Virtualisation. The image is used to encapsulate all the dependencies of the target application including executables,
libraries, static configuration and sometimes static data.

The OCI Image specification defines a standard for constructing the root file-system that a containerised application is
to be launched from. The file-system layout of the image is just like the running application would expect and need as
an application running on a virtual server. This can be as little as an empty / (root) directory for a fully statically linked
executable, or it could be a complete OS file-system layout including /etc, /usr, /bin, /lib etc. - whatever the
target application needs.

According to the OCI specification, these images are built up out of layers that typically start with a minimal OS
such as AlpineLinux, with successive layers of modification that add libraries, configuration and other application
dependencies.

At container launch, the image layers of the specified image are stacked up in ascending order using a Union File-
System. This creates a complete virtual file-system view, that is read only (if an upper layer has the same file as a

88 Chapter 4. Development practices followed at SKA

https://docs.docker.com/
https://github.com/opencontainers/image-spec/releases/tag/v1.0.0
https://alpinelinux.org/
https://en.wikipedia.org/wiki/UnionFS
https://en.wikipedia.org/wiki/UnionFS

developer.skatelescope.org Documentation, Release 0.1.0-beta

lower layer, the lower layer is masked). Over the top of this file-system pancake stack a final read/write layer is added
to complete the view that is passed into the container as it’s root file-system at runtime.

Network Integration

Different Container Engines deal with networking in varying ways at runtime, but typically it comes in two flavours:

• host networking - the host OS network stack is pushed into the container

• a separate virtual network is constructed and bridged into the container namespace

There are variations available within Docker based on overlay, macvlan and custom network plugins that conform to
the CNI specification.

Hostname, and DNS resolution is managed by bind mounting a custom /etc/hosts and /etc/resolv.conf into the container
at runtime, and manipulating the UTS namespace.

Storage Integration

External storage required at runtime by the containerised application is mapped into the container using bind mounting.
This takes a directory location that is already present on the host system, and maps it into the specified location within
the container file-system tree. This can be either files or directories. The details of how specialised storage is made
available to the container is abstracted by the Container Engine which should support the CSI specification for drivers
integrating storage solutions. This is the same mechanism used to share specialised devices eg: /dev/nvidia0 into
a container.

Structuring Containerised Applications

Each containerised application should be a single discrete application. A good test for this is:

• is there a single executable entry point for the container?

• is the running process fulfilling a single purpose?

• is the process independently maintainable and upgradable?

• is the running process independently scalable?

For example, iperf, or apache2 as separate containerised applications are correct, but putting NGiNX and
PostgreSQL in a single container is wrong. This is because NGiNX and PostgreSQL should be independently
maintained, upgraded and scaled, an init process handler would be required to support multiple parenet processes, and
signals would not be correctly propagated to these parent processes (eg: Postgres and NGiNX) from the Container
Engine.

A containerised application should not need a specialised multi-process init process such as supervisord. As soon
as this is forming part of the design, there should almost always be an alternative where each application controlled
by the init process is put into a separate container. Often this can be because the design is trying to treat a container
like a full blown Virtual Machine through adding sshd, syslog and other core OS services. This is not an optimal
design because these services will be multiplied up with horizontal scaling of the containerised application wasting
resources. In both these example cases, ssh is not required because a container can be attached to for diagnostic
purposes eg: docker exec ..., and it is possible to bind mount /dev/log from the host into a container or
configure the containerised application to point to syslog over TCP/UDP.

Take special care with signal handling - the Container Engine propagates signals to init process which should be
the application (using the EXEC for of entry point). If not it will be necessary to ensure that what ever wrapper
(executable, shell script etc.) is used propagates signals correctly to the actual application in the container. This is

4.2. Definition of Done 89

https://wiki.archlinux.org/index.php/Network_bridge
https://github.com/containernetworking/cni
https://en.wikipedia.org/wiki/Linux_namespaces#UTS
https://github.com/container-storage-interface/spec

developer.skatelescope.org Documentation, Release 0.1.0-beta

particularly important at termination time where the Engine will typically send a SIGHUP waiting for a specified
timeout and then following up with a SIGKILL. This could be harmful to stateful applications such as databases,
message queues, or anything that requires an orderly shutdown.

A container image among other things, is a software packaging solution, so it is natural for it to follow the same
Software Development Life Cycle as the application held inside. This also means that it is good practice for the
released container image versions to map to the released application versions. An example of this in action is the
NGiNX Ingress Controller releases. By extension, this also leads to having one Git repository and container image per
application in order to correctly manage independent release cycles.

Defining and Building Container Images

The core of a containerised application is the image. According to the OCI specification, this is the object that
encapsulates the executable and dependencies, external storage (VOLUME) and the basics of the launch interface (the
ENTRYPOINT and ARGS).

The rules for building an image are specified in the Dockerfile which forms a kind of manifest. Each rule specified
creates a new layer in the image. Each layer in the image represents a kind of high watermark of an image state which
can ultimately be shared between different image builds. Within the local image cache, these layer points can be
shared between running containers because the image layers are stacked as a read only UnionFS. This Immutability is
a key concept in containers. containers should not be considered mutable and therefore precious. The goal is that it
should be possible to destroy and recreate them with (little or) no side effects.

If there is any file-system based state requirement for a containerised application, then that requirement should be
satisfied by mounting in external storage. This will mean that the container can be killed and restarted at anytime,
giving a pathway to upgrade-ability, maintainability and portability for the application.

The Image

When structuring the image build eg: Dockerfile, it is important to:

• minimise the size of the image, which will speed up the image pull from the repository and the container launch

• minimise the number of layers to speed up the container launch through speeding up the assembly process

• order the layers from most static to least static so that there is less churn and depth to the image rebuild process
eg: why rebuild layers 1-5 if only 6 requires building.

Image Definition Syntax

Consistency with Dockerfile syntax will make code easier to read. All directives and key words should be in upper
case, leaving a clear distinction from image building tool syntax such as Unix commands.

All element names should be in lower case eg: image labels and tags, and arguments (ARG). The exception is environ-
ment variables (ENV) as it is customary to make them all upper case within a shell environment.

Be liberal with comments (lines starting with #). These should explain each step of the build and describe any external
dependencies and how changes in those external dependencies (such as a version change in a base image, or included
library) might impact on the success of the build and the viability of the target application.

This application depends on type hints available only in 3.7+
as described in PEP-484
ARG base_image="python:3.7"
FROM $base_image
...

90 Chapter 4. Development practices followed at SKA

https://github.com/kubernetes/ingress-nginx/releases

developer.skatelescope.org Documentation, Release 0.1.0-beta

Where multi-line arguments are used, sort them for ease of reading, eg:

RUN apt-get install -y \
apache2-bin \
binutils \
cmake

...

Build Context

The basic build process is performed by:

docker build -t <fully qualified tag for this image> \
-f path/to/Dockerfile \
project/path/to/build/context

The build context is a directory tree that is copied into the image build process (just another container), making all of
the contained files available to subsequent COPY and ADD commands for pushing content into the target image. The
size of the build context should be minimised in order to speed up the build process. This should be done by specifying
a path within the project that contains only the files that are required to be added to the image.

Always be careful to exclude unnecessary and sensitive files from the image build context. Aside from specifying a
build context directory outside the root of the current project, it is also possible to specify a .dockerignore file
which functions like a .gitignore file listing exclusions from the initial copy into the build context. Never use
ADD, COPY or ENV to include secret information such as certificates and passwords into an image eg: COPY id_rsa
.ssh/id_rsa. These values will be permanently embedded in the image (even buried in lower layers), which may
then be pushed to a public repository creating a security risk.

Minimise Layers

Image builds tend to be highly information dense, therefore it is important to keep the scripting of the build process
in the Dockerfile short and succint. Break the build process into multiple images as it is likely that part of your
proposed image build is core and common to other applications. Sharing base images (and layers) between derivative
images will improve download time of images, and reduce storage requirements. The Container Engine should only
download layers that it does not already have - remember, the UnionFS shares the layers between running containers
as it is only the upper most layer that is writable. The following example illustrates a parent image with children:

FROM python:latest
RUN apt-get install -y libpq-dev \

postgresql-client-10
RUN pip install psycopg2 \

sqlalchemy

The image is built with docker build -t python-with-postgres:latest .. Now we have a base
image with Python, Postgres, and SQLalchemy support that can be used as a common based for other applications:

FROM python-with-postgres:latest
COPY ./app /app
...

Minimising layers also reduces the build and rebuild time - ENV, RUN, COPY, and ADD statements will create inter-
mediate cached layers.

4.2. Definition of Done 91

https://docs.docker.com/engine/reference/builder/#dockerignore-file

developer.skatelescope.org Documentation, Release 0.1.0-beta

Multi-stage Builds

Within a Dockerfile it is possible to specify multiple dependent build stages. This should be used to reduce the
final size of an image. For example:

FROM python-builder:latest AS builder
COPY requirements.txt .
RUN pip3 install -r requirements.txt

FROM python-runtime:latest
COPY --from=builder /usr/local /usr/local
...

This uses an imaginary Python image with all the development tools, and necessary compilers as a named intermediate
image called builder where dependent libraries are compiled, and built and then the target image is created from
an imaginary streamlined Python runtime image which has the built libraries copied into it from the original build,
leaving behind all of the nolonger required build tools.

Encapsulation of Data with Code

Avoid embedding configuration and data that your application requires in the container image. The only exceptions to
this should be:

• The configuration or data is guaranteed to be static

• The configuration or data is tiny (kilo-bytes to few mega-bytes), well defined, and forms sensible defaults for
the running application

To ignore this, will likely make your container implementation brittle and highly specific to a use case, as well as bloat-
ing the image size. It is better practice to mount configuration and data into containers at runtime using environment
variables and volumes.

Base Images

Base images and image provenance will need to be checked in order to maintain the security and integrity of the SKA
runtime systems. This is will include (but not limited to) automated processes for:

• Code quality checking for target applications

• Vulnerability scanning

• Static application security testing

• Dependency scanning

• License scanning

• Base image provenance tree

Ensuring that the base images and derivative images are safe and secure with verifiable provenance wll be important
to the security of the entire platform, so it will be important to choose a base image that will pass these tests. To assist
with this, the SKA will curate a set of base images for the supported language environments so that developers can
have a supported starting position. Discuss your requirements with the Systems Team, so that they can be captured
and supported in advance.

As a general rule, stable image tags should be used for base images that at least include the Major and Minor version
number of Semantic Versioning eg: python:3.7. As curated base images come from trusted sources, this ensures
that the build process gets a functionally stable starting point that will still accrue bug fixing and security patching. Do

92 Chapter 4. Development practices followed at SKA

https://semver.org

developer.skatelescope.org Documentation, Release 0.1.0-beta

not use the latest tag as it is likely that this will break your application in future, and it gives no indication of the
container developers last tested environment specification.

Reduce Image Size

Avoid installing unnecessary packages in your container image. Your production container should not automatically
require a debugger, editor or network analysis tools. Leave these out, or if they are truly required, then create a
derivative image from the standard production one explicitly for the purposes of debugging, and problem resolution.
Adding these unnecessary packages will bloat the image size, and reduce the efficiency of image building, and shipping
as well as unnecessarily expose the production container to potential further security vulnerabilities by increasing the
attack surface.

RUN and packages

When installing packages with the RUN directive, always clean the package cache afterwards to avoid the package
archives and other temporary files unnecessarily becoming part of the new layer - eg:

...
RUN \

apt-get update && \
apt-get install -y the-package && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

...

Ordering

Analyse the order of the build directives specified in the Dockerfile, to ensure that they are running from the lowest
frequency changing to the highest.

Consider the following:

FROM python:latest
ARG postgres_client "postgresql-client-10 libpq-dev"
RUN apt-get install -y $postgres_client
COPY requirements.txt .
RUN pip3 install -r requirements.txt
COPY ./app /app
...

Looking at the example above, during the intensive development build phase of an application, it is likely that the
most volitile element is the ./app itself, followed by the Python dependencies in the requirements.txt file,
then finally the least changeable element is the specific postgresql client libraries (the base image is always at the top).

Laying out the build process in this way ensures that the build exploits as much as possible the build cache that the
Container Engine holds locally. The cache calculates a hash of each element of the Dockerfile linked to all the
previous elements. If this hash has not changed then the build process will skip the rebuild of that layer and pull it
from the cache instead. If in the above example, the COPY ./app /app step was placed before the RUN apt-get
install, then the package install would be triggered every time the code changed in the application unnecessarily.

4.2. Definition of Done 93

developer.skatelescope.org Documentation, Release 0.1.0-beta

Labels

Use the LABEL directive to add ample metadata to your image. This metadata is inherited by child images, so is useful
for provenance and traceability.

...
LABEL \

author="A Developer <a.developer@example.com>" \
description="This image illustrates LABELs" \
license="Apache2.0" \
registry="acmeincorporated/imagename" \
vendor="ACME Incorporated" \
org.skatelescope.team="Systems Team" \
org.skatelescope.version="1.0.0" \
org.skatelescope.website="http://github.com/ACMEIncorporate/widget"

...

The following are recommended labels for all images:

• author: name and email address of the author

• description: a short description of this image and it’s purpose.

• license: license that this image and contained software are released under

• registry: the primary registry that this image should be found in

• vendor: the owning organisation of the software component

• org.skatelescope.team: the SKA team responsible for this image.

• org.skatelescope.version: follows Semantic Versioning, and should be linked to the image version tag discussed
below.

• org.skatelescope.website: where the software pertaining to the building of this image resides

Arguments

Use arguments via the ARG directive to parameterise elements such as the base image, and versions of key packages
to be installed. This enables reuse of the build recipe without modification. Always set default values, as these can be
overridden at build time, eg:

ARG base_image="python:latest"
FROM $base_image
RUN apt-get install -y binutls cmake
ARG postgres_client="postgresql-client-10 libpq-dev"
RUN apt-get install -y $postgres_client
...

The ARGs referenced above can then be addressed at build time with:

docker build -t myimage:latest \
--build-arg base_image="python:3" \
--build-arg postgres_client="postgresql-client-9 libpq-dev"
-f path/to/Dockerfile \
project/path/to/build/context

Note: the ARG postgres_client is placed after the apt-get install -y binutls cmake as this will
ensure that the variable is bound as late as possible without invalidating the layer cache of that package install.

94 Chapter 4. Development practices followed at SKA

https://semver.org

developer.skatelescope.org Documentation, Release 0.1.0-beta

Environment Variables

Only set environment variables using ENV if they are required in the final image. ENV directives create layers and a
permanent record of values that are set, even if they are overridden by a subsequent ENV directive. If an environment
variable is required by a build step eg: RUN gen-myspecial-hash, then chain the export of the variable in the
RUN statement, eg:

...
RUN export THE_HASH="wahoo-this-should-be-secret" \

&& gen-myspecial-hash \
&& unset THE_HASH

...

This ensures that the value is ephemeral, at least from the point of view of the resultant image.

ADD or COPY + RUN vs RUN + curl

ADD and COPY are mostly interchangeable, however ADD my-fancy.tar.gz /tmp might not do what you ex-
pect in that it will auto-extract the archive at the target location. COPY is the preferred mechanism as this does not
have any special behaviours.

Be clear of what the purpose of the COPY or ADD statement is. If it is a dependency only for a subsequent build
requirement, then consider replacing with RUN eg:

...
RUN \

mkdir /usr/local/dist && cd /usr/local/dist && \
curl -O https://shibboleth.net/downloads/identity-provider/3.2.1/shibboleth-

→˓identity-provider-3.2.1.tar.gz && \
tar -zxf shibboleth-identity-provider-3.2.1.tar.gz && \
rm shibboleth-identity-provider-3.2.1.tar.gz

...

The above example downloads and installs the software archive, and then removes it within the same image layer,
meaning that the archive file is not left behind to bloat the resultant image.

USER and WORKDIR

It is good practice to switch the container user to a non privelleged account when possible for the application, as this
is good security practice, eg: RUN groupadd -r userX && useradd --no-log-init -r -g userX
userX, and then specify the user with USER userX[:userX].

Never use sudo - there should never be a need for an account to elevate permissions. If this seems to be required then
please revisit the architecture, discuss with the Systems Team and be sure of the reasoning.

WORKDIR is a helper that sets the default directory at container launch time. Aside from being good practice, this is
often helpful when debugging as the path and context is already set when using docker exec -ti

ENTRYPOINT and CMD

ENTRYPOINT and CMD are best used in tandem, where ENTRYPOINT is used as the default application (fully quali-
fied path) and CMD is used as the default set of arguments passed into the default application, eg:

4.2. Definition of Done 95

developer.skatelescope.org Documentation, Release 0.1.0-beta

...
ENTRYPOINT ["/bin/cat"]
CMD ["/etc/hosts"]
...

It is best to use the ["thing"] notation as this is the exec format ensuring that proper signal propagation occurs to
the containerised application.

It is often useful to create an entry point script that encapsulates default flags and settings passed to the application,
however, still ensure that the final application launch in the script uses exec /path/to/my/app ... so that it
becomes PID 1.

ONBUILD and the undead

ONBUILD is a powerful directive that enables the author of an image to enforce an action to occur in a subsequent
derivative image build, eg:

FROM python:latest
RUN pip3 install -r https://example.com/parent/image/requirements.txt
ONBUILD COPY ./app ./app
ONBUILD RUN chmod 644 ./app/bin/*
...

Built with docker build -t myimage:1.0.0-onbuild .

In any child image created FROM myimage:1.0.0-onbuild ..., the parent image will seemingly call back
from the dead and execute statement COPY ./app ./app and RUN chmod 644 ./app/bin/* as soon as
the FROM statement is interpreted. As there is no obvious way to tell whether an image has embedded ONBUILD
statements (without docker inspect myimage:1.0.0-onbuild), it is customary to add an indicator to the
tag name as above: myimage:1.0.0-onbuild to act as a warning to the developer. Use the ONBUILD feature
sparingly, as it can easily cause unintended consequences and catch out dependent developers.

Naming and Tagging

Image names should reflect the application that will run in the resultant container, which ideally ties in directly with
the repository name eg: tango-example/powersupply:latest, is the image that represents the Tango pow-
ersupply device from the tango-example repository.

Images should be tagged with:

• short commit hash as derived by git rev-parse --verify --short=8 HEAD from the parent repos-
itory eg: bbedf059. This is useful on each feature branch build as it uniquely identifies branch HEAD on each
push when used in conjunction with Continuous Integration.

• When an image version for an application is promoted to production, it should be tagged with the application
version (using Semantic Versioning). For the latest most major.minor.patch image version the ‘latest’ tag should
be added eg: for a tango device and a released image instance with hash tag: 9fab040a, added version tags are:
1.13.2, 1.13, 1, latest - where major/minor/patch version point to the latest in that series.

• A production deployment should always be made with a fully qualified semantic version eg:
tango-example/powersupply:1.13.2. This will ensure that partial upgrades will not inadvertently
make their way into a deployment due to historical scheduling. The latest tag today might point to the same
hash as 1.13.2, but if a cluster recovery was enacted next week, it may now point to 1.14.0.

While it is customary for th Docker community at large to support image variants based on different image OS bases
and to denote this with tags eg: python:<version>-slim which represents the Debian Slim (A trimmed Debian

96 Chapter 4. Development practices followed at SKA

https://github.com/ska-telescope/tango-example/blob/master/Dockerfile
https://github.com/ska-telescope/tango-example/blob/master/Dockerfile
https://github.com/ska-telescope/tango-example
https://semver.org
https://hub.docker.com/_/python/
https://hub.docker.com/_/debian
https://hub.docker.com/_/debian

developer.skatelescope.org Documentation, Release 0.1.0-beta

OS) version of a specific Python release, the SKA will endeavour to support only one OS base per image, removing
this need as it does not strictly follow Semantic Versioning, and creates considerable maintenance overhead.

Within the SKA hosted Continuous Integration infrastructure, development and test images will be periodically purged
from the repository after N months, leaving the last version built. All production images are kept indefinitely.

This way anyone who looks at the image repository will have an idea of the context of a particular image version and
can trace it back to the source.

Image Tools

Any image build tool is acceptable so long as it adheres to the OCI image specification v1.0.0. The canonical tool used
for this standards document is Docker 18.09.4 API version 1.39, but other tools maybe used such as BuildKit and img.

Development tools

Debuging tools, profilers, and any tools not essential to the running of the target application should not be included
in the target application production image. Instead, a derivative image should be made solely for debugging purposes
that can be swapped in for the running application as required. This is to avoid image bloat, and to reduce the attack
surface of running containers as a security consideration. These derivative images should be named explicitly dev eg:
tango-example/powersupply-dev:1.13.2.

Image Storage

All images should be stored in a Docker v2 Registry API compliant repository, protected by HTTPS. The SKA sup-
ported and hosted repositories are based on the Nexus Container Registry available at nexus.engageska-portugal.pt
.

All containerised software used within the SKA, will be served out of the hosted repository service. This will ensure
that images are quality assured and always remain available beyond the maintenance life-cycle of third party and COTs
software.

Image signing and Publishing

All images pushed to the SKA hosted repository must be signed. This will ensure that only trusted content will be
launched in containerised environments. Docker Content Trust signatures can be checked with:

$docker trust inspect --pretty \
nexus.engageska-portugal.pt/ska-docker/ska-python-runtime:1.2.3

Signatures for nexus.engageska-portugal.pt/ska-docker/ska-python-runtime:1.2.3

SIGNED TAG DIGEST
→˓ SIGNERS
1.2.3 3f8bb7c750e86d031dd14c65d331806105ddc0c6f037ba29510f9b9fbbb35960
→˓ (Repo Admin)

Administrative keys for nexus.engageska-portugal.pt/ska-docker/ska-python-runtime:1.2.
→˓3

Repository Key: abdd8255df05a14ddc919bc43ee34692725ece7f57769381b964587f3e4decac
Root Key: a1bbec595228fa5fbab2016f6918bbf16a572df61457c9580355002096bb58e1

4.2. Definition of Done 97

https://hub.docker.com/_/debian
https://hub.docker.com/_/debian
https://nexus.engageska-portugal.pt/
https://github.com/moby/buildkit
https://github.com/genuinetools/img
https://help.sonatype.com/repomanager3/private-registry-for-docker
https://nexus.engageska-portugal.pt/#browse/search/docker
https://docs.docker.com/engine/security/trust/content_trust/

developer.skatelescope.org Documentation, Release 0.1.0-beta

Running Containerised Applications

As part of the development process for a containerised application, the developer must determine what the application
interface contract is. Referring back to the Container Anatomy diagram above, a containerised application has a
number of touch points with the underlying host through the Container Engine. These touch points form the interface
and include:

• Network - network and device attachment, hostname, DNS resolution

• Volumes - persistent data and configuration files

• Ports

• Environment variables

• Permissions

• Memory

• CPU

• Devices

• OS tuning, and ulimits

• IPC

• Signal handling

• Command and arguments

• Treatment of StdIn, StdOut, and StdErr

Usage documentation for the image must describe the intended purpose of each of these configurable resources where
consumed, how they combine and what the defaults are with default behaviours.

Container Resources

Management of container resources is largely dependent on the specific Container Engine in use. For example, Docker
by default runs a container application in it’s own namespace as the root user, however this is highly configurable. The
following example shares devices, and user details with the host OS, effectively transparently running the application
as the current user of the command line:

cat <<EOF | docker build -t mplayer -
FROM ubuntu:18.04
ENV DEBIAN_FRONTEND noninteractive
RUN \

apt-get update && \
apt-get install mplayer -y && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

ENTRYPOINT ["/usr/bin/mplayer"]
CMD ["--help"]
EOF

docker run --rm --name the-morepork-owl \
--env HOME=${HOME} \
--env DISPLAY=unix$DISPLAY \
--volume /etc/passwd:/etc/passwd:ro \
--user $(id -u) \

(continues on next page)

98 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

--volume ${HOME}:${HOME} \
--workdir ${HOME} \
--volume /tmp/.X11-unix:/tmp/.X11-unix:ro \
--volume /etc/machine-id:/etc/machine-id:ro \
--volume /run/user/$(id -u):/run/user/$(id -u):ro \
-ti mplayer /usr/bin/mplayer https://www.doc.govt.nz/Documents/conservation/native-

→˓animals/birds/bird-song/morepork-song.mp3

Storage

As previously stated, all storage shared into a container is achieved through bind mounting. This is true for both
directory mount points and individual files. While it is not mandatory to use the VOLUME directive in the image
Dockerfile, it is good practice to do this for all directories to be mounted as it provides annotation of the image
requirements. These volumes and files can be populated with default data, but be aware they are completely masked
at runtime when overlayed by a mount.

When adding a volume at runtime, consider whether write access is really required. As with the example above
--volume /etc/passwd:/etc/passwd:ro ensures that the /etc/passwd file is read only in the container
reducing the security concerns.

Network

containerised applications should avoid using --net=host (host only) based networking as this will push the con-
tainer onto the running host network namespace monopolising any ports that it uses. This means that another instance
of this container or any other that uses the same ports cannot run on the same host severely impacting on scheduling
and resource utilisation efficiencies.

Permissions

Where possible, a containerised application should run under a specific UIG/GID to avoid privilege escalation as an
attack vector.

It should be a last resort to run the container in privileged mode docker run --privileged ..., as there are
very few use cases that will require this. The most notable are when a container needs to load kernel modules, or a
container requires direct host resource access (such as network stack, or specialised device) for performance reasons.
Running a container in this mode will push it into the host OS namespace meaning that the container will monopolise
any resources such as network ports (see Network).

Configuration

Configuration of a containerised application should be managed primarily by:

• Environment Variables

• configuration files

Avoid passing large numbers of configuration options on the command line, and service connection information that
could contain secrets such as keys and passwords should not be passed as options, as these can appear in the host OS
process table.

4.2. Definition of Done 99

developer.skatelescope.org Documentation, Release 0.1.0-beta

Configuration passed into a container should not directly rely on a 3rd party secret/configuration service integration
such as vault, consul or etcd. If integration with these services are required, then a sidecar configuration provider
architecture should be adopted that specifically handles these environment specific issues.

Appropriate configuration defaults should be defined in the image build as described in the earlier section on image
environment variables, along with default configuration files. These defaults should be enough to launch the appli-
cation into it’s minimal state unaided by specifics from the user. If this is not possible then the default action of the
container should be to run the application with the --help option to start the process of informing the user what to
do next.

Memory and CPU

Runtime constraints for Memory and CPU should be specified, to ensure that an application does not exhaust host
resources, or behave badly next to other co-located applications, for example with Docker:

docker run --rm --name postgresdb --memory="1g" --cpu-shares="1024" --cpuset-cpus="1,3
→˓" -d postgres

In the above scenario, the PostgreSQL database would have a 1GB of memory limit before an Out Of Memory error
occurred, and it would get a 100% share of CPUs 1 and 3. This example also illustrates CPU pinning.

Service Discovery

Although Container Orchestration is not covered by these standards, it is important to note that the leading Orchestra-
tion solutons (Docker Swarm, Kubernetes, Mesos) use DNS as the primary service discovery mechanism. This should
be considered when designing containerised applications so that they inherrently expect to resolve dependent services
by DNS, and in return expose their own services over DNS. This will ensure that when in future the containerised
application is integrated as part of an Orchestrated solution, it will conform to that architecture seamlessly.

Standard input, output, and errors

Container Engines such as Docker are implemented on the fundamental premise that the containerised application
behaves as a standard UNIX application that can be launched (exec'ed) from the commandline. Because of this, the
application is expected to respond to all the standard inputs and outputs including:

• stdin

• stdout

• stderr

• signals

• commandline parameters

The primary use case for stdin is where the container is launched replacing the entry point with a shell such as bash.
This enables a DevOps engineer to enter into the container namespace for diagnostic and debug purposes. While it
is possible to do, it is not good practice to design a containerised application to read from stdin as this will make an
assumption that any scheduling and orchestration service that executes the container will be able to enact UNIX pipes
which is not the case.

stdout and stderr are sent straight to the Container Engine logging system. In Docker, this is the logging sub-system
which combines the output for viewing purposes with docker logs Because these logging systems are
configurable, and can be syndicated into unviversal logging solutions, using stdout/stderr is used as a defacto standard
for logging.

100 Chapter 4. Development practices followed at SKA

https://www.vaultproject.io/
https://www.consul.io/
https://etcd.readthedocs.io/en/latest/
https://docs.docker.com/config/containers/logging/configure/

developer.skatelescope.org Documentation, Release 0.1.0-beta

Logging

The SKA has adopted SKA Log Message Format as the logging standard to be used by all SKA software. This should
be considered a base line standard and will be decorated with additional data by an integrated logging solution (eg:
ElasticStack).

The following recommendations are made:

• when developing containerised applications, the development process should scale from the individual unit
on the desktop up to the production deployment. In order to do this, logging should be implemented so that
stdout/stderr is used, but is configurable to switch the emission to syslog

• log formatting must adhere to SKA Log Message Format

• testing should include confirmation of integration with the host syslog, which is easily achieved through bind
mounting /dev/log

• within the syslog standard, the message portion should be enriched with JSON structured data so that the uni-
versal logging solution integrated with the Container Engine and/or Orchestration solution can derive greater
semantic meaning from the application logs

Sharing

Aside from communication over TCP/UDP sockets between processes, it is possible to communicate between con-
tainers in other ways, including:

• SHMEM/IPC

• Named pipes

• Shared volumes

SysV/POSIX shared memory segments, semaphores and message queues can be shared using the
--ipc=host|container-id option for docker run However, this is specific to the runtime en-
viroment and the orchestration solution. The host option is a security risk that must be evaluated as any joining
containers will be pushed into the host OS namespace.

Named pipes, are straight forward as these are achieved through shared hostpath mounts between the containers where
the pipe can be created using mkfifo.

4.2.8 Container Standards CheatSheet

This section provides a condensed summary of the standards to be used as a checklist.

Reference Implementation

Throughout Docker is used as the reference implementation with the canonical version being Docker 18.09.4 CE API
version 1.39.

Structuring applications in a Containerised Environment

• Each containerised application should be a single discrete application.

4.2. Definition of Done 101

https://www.elastic.co/products/
https://docs.docker.com/

developer.skatelescope.org Documentation, Release 0.1.0-beta

• A containerised application should not need a specialised multi-process init process such as supervisord as
there should not be multiple parent processes.

• Ensure that signal handling is correctly propagated from PID 1 to the containerised application so that container
engine SIGHUP and SIGKILL are correctly handled.

• There should be one container image per application with one application per Git repository in order to correctly
manage independent release cycles.

Defining and Building Container Images

• Containers are immutable by design - it should be possible to destroy and recreate them with (little or) no side
effects.

• Do not store state inside a containerised application - always mount in storage for this purpose keeping containers
ephemeral.

• Minimise the size and number of layers of the image to speed up image transfer and container launch.

• Order the layers from most static to least static to reduce churn and depth to the image rebuild process.

• All directives and key words should be in upper case.

• All element names should be in lower case - image labels and tags, and arguments (ARG) apart from environment
variables (ENV - upper case).

• Liberally use comments (lines starting with #) to explain each step of the build and describe any external
dependencies.

• Where multi-line arguments are used such as RUN apt-get install ..., sort them for ease of reading.

• The size of the build context should be minimised in order to speed up the build process.

• Always be careful to exclude unnecessary and sensitive files from the image build context.

• Break the build process into multiple images so that core and common builds can be shared with other applica-
tions.

• Use multi-stage builds (with COPY --from...) to reduce the final size of an image.

• Avoid embedding configuration and data in the container image unless it is small, guaranteed to be static, and
forms sensible defaults for the running application.

• Base images and image provenance must be checked in order to maintain the security and integrity of the SKA
runtime systems.

• Stable image tags should be used for base images that include the Major and Minor version number of Semantic
Versioning eg: python:3.7.

• Avoid installing unnecessary packages in your container image.

• Create a derivative image from the standard production one explicitly for the purposes of debugging, and prob-
lem resolution.

• Always clean the package cache afterward use of apt-get install ... to avoid the package archives
and other temporary files becoming part of the new layer.

• Order the build directives specified in the Dockerfile, to ensure that they are running from the lowest fre-
quency changing to the highest to exploit the build cache.

• Use the LABEL directive to add metadata to your image.

• Use arguments (ARG) to parameterise elements such as the base image, and versions of key packages to be
installed.

102 Chapter 4. Development practices followed at SKA

https://semver.org
https://semver.org

developer.skatelescope.org Documentation, Release 0.1.0-beta

• Only set environment variables using ENV if they are required in the final image to avoid embedding unwanted
data.

• Prioritise use of RUN + curl over ADD/COPY + RUN to reduce image size.

• use USER and WORKDIR to switch the user at execution time and set directory context.

• Never use sudo - there should never be a need for an account to elevate permissions.

• set ENTRYPOINT to the full path to the application and CMD to the default command line arguments.

• Use the ["thing"] which is the exec notation ensuring that proper signal propagation occurs to the con-
tainerised application.

• Use the ONBUILD feature sparingly, as it can cause unintended consequences.

Naming and Tagging

• Image names should reflect the application that will run in the resultant container eg: tango-example/
powersupply:1.13.2.

• Images should be tagged with short commit hash as derived by git rev-parse --verify --short=8
HEAD from the parent Git repository.

• When an image version for an application is promoted to production, it should be tagged with the application
version (using Semantic Versioning).

• For the most current major.minor.patch image version the ‘latest’ tag should be added.

• Applicaiton version tags should be added eg: 1.13.2, 1.13, 1 - where major/minor/patch version point to the
latest in that series.

• A production deployment should always be made with a fully qualified semantic version eg:
tango-example/powersupply:1.13.2.

• The SKA will endeavour to support only one OS base per image as the practice of multi-OS bases does not
strictly follow Semantic Versioning, and creates considerable maintenance overhead.

• Within the SKA hosted Continuous Integration infrastructure, all production images are kept indefinitely.

• Images with debuging tools, profilers, and any tools not essential to the running of the target applica-
tion should be contained in a derivative image that is named explicitly dev eg: tango-example/
powersupply-dev:1.13.2.

• All images should be stored in a Docker v2 Registry API compliant repository, protected by HTTPS.

• All containerised software used within the SKA, will be served out of the hosted repository service.

Image Signing and Publishing

• All images pushed to the SKA hosted repository must be signed. This will ensure that only trusted content will
be launched in containerised environments.

Running Containerised Applications

• The containerised application developer must determine what the application interface contract based on the
touch points with resources from the underlying host through the Container Engine.

• Usage documentation for the image must describe the intended purpose of each configured resource, how they
combine and what the defaults are with default behaviours.

4.2. Definition of Done 103

https://semver.org

developer.skatelescope.org Documentation, Release 0.1.0-beta

• Use VOLUME statements for all directories to be mounted as it provides annotation of the image requirements.

• When adding a volume at runtime, consider whether write access is really required - add :ro liberally.

• Containerised applications should avoid using --net=host (host only) based networking as this will push the
container onto the running host network namespace monopolising any ports that it uses.

• Where possible, a containerised application should run under a specific UIG/GID to avoid privilege escalation
as an attack vector.

• It should be a last resort to run the container in privileged mode docker run --privileged ... as this
has security implications.

• Configuration of a containerised application should be managed primarily by Environment Variables and con-
figuration files.

• Avoid passing large numbers of configuration options on the command line or secrets such as keys and pass-
words.

• Configuration passed into a container should not directly rely on a 3rd party secret/configuration service inte-
gration.

• Appropriate configuration defaults should be defined in the image build using image environment variables,
along with default configuration files. These defaults should be enough to launch the application into it’s mini-
mal state unaided by specifics from the user.

• Runtime constraints for Memory and CPU should be specified, to ensure that an application does not exhaust
host resources, or behave badly with co-located applications.

• Although Container Orchestration is not covered by these standards, it is important to note that the leading
Orchestration solutons (Docker Swarm, Kubernetes, Mesos) use DNS as the primary service discovery mech-
anism. This should be considered when designing containerised applications so that they inherrently expect to
resolve dependent services by DNS, and in return expose their own services over DNS. This will ensure that
when in future the containerised application is integrated as part of an Orchestrated solution, it will conform to
that architecture seamlessly.

Logging

• Stdout and stderr are sent straight to the Container Engine logging system. In Docker, this is the logging sub-
system which combines the output for viewing purposes with docker logs This is used as a defacto
standard for containerised application logging.

• Logging should be implemented so that stdout/stderr is used, but is configurable to switch the emission to syslog

• Logging to stdout or console so that the routing and handling of log messages can be handled by the container
runtime (dockerd, containerd) or dynamic infrastructure platform (Kubernetes).

• The SKA has adopted SKA Log Message Format as the logging standard to be used by all SKA software.

• Within the this standard, the message portion should be enriched with JSON structured data so that the universal
logging solution integrated with the Container Engine and/or Orchestration solution can derive greater semantic
meaning from the application logs

4.2.9 Container Orchestration Guidelines

This section describes a set of standards, conventions and guidelines for deploying application suites on Container
Orchestration technologies.

104 Chapter 4. Development practices followed at SKA

https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/config/containers/logging/configure/

developer.skatelescope.org Documentation, Release 0.1.0-beta

Table of Contents

• Container Orchestration Guidelines

– Overview of Standards

– Structuring application suites for Orchestration

* what is Cloud Native

* How does orchestration work

* Structuring Application Suites

* Example: Tango Controls

* Example: MPI jobs

* Linking Components Together

– Defining and building cloud native application suites

* Metadata

· Namespaces

· Name and Labels

* Templating the Application

· Helm Best Practices

· Metadata with Helm

· Defining resources

· Managing configuration

· Config in ConfigMaps

· Secrets

· Storage

· Tests

* Integrating a chart into the SKAMPI repo

· Local steps

· Gitlab

– Kubernetes primitives

* The Pod

· Container patterns

· initContainers

· postStart/preStop

· readinessProbe/livenessProbe

· Sharing, Networking, Devices, Host Resource Access

* Use of Services

* Use of Ingress

4.2. Definition of Done 105

developer.skatelescope.org Documentation, Release 0.1.0-beta

– Scheduling and running cloud native application suites

* Security

· Roles

· Pod Security Policies

· Network Policies

* Images, Tags, and pullPolicy

* Resource reservations and constraints

* Restarts

* Logging

* Metrics

* Scheduling

· Examples of scheduling control patterns

· obs1 and obs2 - nodeAffinity

· obs3 - nodeAffinity exclussion

· obs4 - nodeAntiAffinity

· obs5 - podAntiAffinity

· obs6 - Taint NoSchedule

· obs7 - add tolleration

Overview of Standards

These standards, best practices and guidelines are based on existing industry standards and tooling. The main refer-
ences are:

• Cloud Native Computing Foundation.

• Docker v2 Registry API Specification.

• Container Network Interface.

• Container Storage Interface.

• Open Container Initiative image specification.

• Open Container Initiative run-time specification.

The standards are broken down into the following areas:

• Structuring application suites for orchestration - general guidelines for breaking up application suites for running
in a container orchestration

• Defining and building cloud native application suites - resource definitions, configuration, platform resource
integration

• Kubernetes primitives - a more detailed look at key components: Pods, Services, Ingress

• Scheduling and running cloud native application suites - scheduling, execution, monitoring, logging, diagnos-
tics, security considerations

106 Chapter 4. Development practices followed at SKA

https://www.cncf.io/
https://docs.docker.com/registry/spec/api/
https://github.com/containernetworking/cni
https://github.com/container-storage-interface/spec
https://github.com/opencontainers/image-spec/releases/tag/v1.0.0
https://github.com/opencontainers/runtime-spec/releases/tag/v1.0.0

developer.skatelescope.org Documentation, Release 0.1.0-beta

Throughout this documentation, Kubernetes in conjunction with Helm is used as the reference implementation with
the canonical versions being Kubernetes v1.14.1 and Helm v2.13.1, however the aim is to target compliance with the
OCI specifications and CNF guidelines so it is possible to substitute in alternative Container Orchestration solutions,
and tooling.

A set of example Helm Charts are provided in the repository container-orchestration-chart-examples. These can be
used to get an overall idea of how the components of a chart function together, and how the life cycle and management
of a chart can be managed with make.

Structuring application suites for Orchestration

In order to understand how to structure applications suites for orchestration, we first need to understand what the goals
of Cloud Native software engineering are.

what is Cloud Native

It is the embodiment of modern software delivery practices supported by tools, frameworks, processes and platform
interfaces.

These capabilities are the next evolution of Cloud Computing, raising the level of abstraction for all actors against the
architecture from the hardware unit to the application component.

What does this mean? Developers and system operators (DevOps) interface with the platform architecture using
abstract resource concepts, and should have next to no concern regarding the plumbing or wiring of the platform,
while still being able to deploy and scale applications according to cost and usage.

Cloud Native exploits the advantages of the Cloud Computing delivery model:

• PaaS (Platform as a Service) layered on top of IaaS (Infrastructure as a Service)

• CI/CD (Continuous Integration/Delivery) – fully automated build, test, deploy

• Modern DevOps – auto-scaling, monitoring feedback loop to tune resource requirements

• Software abstraction from platform compute, network, storage

• Portability across Cloud Services providers

Why Cloud Native SDLC (Software Development Life Cycle)?

Kubernetes provides cohesion for distributed projects:

• Codify standards through implementing testing gates

• Ensures code quality, consistency and predictability of deployment success – CI/CD

• Automation – build AND rebuild for zero day exploits at little cost

• Portability of SDI (Software Defined Infrastructure) as well as code

• Provides a codified reference implementation of best practices, and exemplars

• Enables broad engagement – an open and collaborate system - a “Social Coding Platform”

• Consistent set of standards for integration with SRC (SKA Regional Centres), and other projects – the future
platform of integrated science projects through shared resources enabled by common standards

4.2. Definition of Done 107

https://kubernetes.io/
https://helm.sh/
https://github.com/ska-telescope/container-orchestration-chart-examples

developer.skatelescope.org Documentation, Release 0.1.0-beta

Fig. 2: How Kubernetes fits into the Cloud Native SDLC

108 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

How does orchestration work

At the core of Cloud Native is the container orchestration platform. For the purposes of these guidelines, this consists
of Kubernetes as the orchestration layer, over Docker as the container engine.

Fig. 3: The architecture of Kubernetes at the centre of the Cloud Native platform

Kubernetes provides an abstraction layer from hardware infrastructure resources enabling compute, network, storage,
and other dependent services (other applications) to be treated as abstract concepts. A computing cluster is not a col-
lection of machines but instead is an opaque pool of resources, that are advertised for availability through a consistent
REST based API. These resources can be customised to provide access to and accounting of specialised devices such
as GPUs.

Through the Kubernetes API, the necessary resources that make up an application suite (compute, network, storage)
are addressed as objects in an idempotent way that declares the desired state eg: this number of Pods running these
containers, backed by this storage, on that network. The scheduler will constantly move the cluster towards this desired
state including in the event of application or node/hardware failure. This builds in robustness and auto-healing.

Both platform and service resources can be classified by performance characteristics and reservation criteria using
labelling, which in turn are used by scheduling algorithms to determine optimum placement of workloads across the
cluster. All applications are deployed as sets of one or more containers in a minimum configuration called a Pod.
Pods are the minimum scalable unit that are distributed and replicated across the cluster according to the scheduling
algorithm. A Pod is essentially a single Kernel namespace holding one or more containers. It only makes sense to
put together containers that are essentially tightly coupled and logically indivisible by design. These Pods can be
scheduled in a number of patterns using Controllers (full list) including bare Pod (a single Pod instance), Deployment
(a replicated Pod set), StatefulSet (a Deployment with certain guarantees about naming and ordering of replicated
units), DaemonSets (one Pod per scheduled compute node), and Job/CronJob (run to completion applications).

A detailed discussion of these features can be found in the main Kubernetes documentation under Concepts.

4.2. Definition of Done 109

https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/controllers/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/

developer.skatelescope.org Documentation, Release 0.1.0-beta

Structuring Application Suites

Architecting software to run in an orchestration environment builds on the guidelines given in the Container Standards
‘Structuring Containerised Applications’ section. The key concepts of treating run time containers as immutable and
atomic applications where any application state is explicitly dealt with through connections to storage mechanisms, is
key.

The application should be broken into components that represent:

• an application component has an independent development lifecycle

• individual process that performs a discrete task such as a micro service, specific database/web service, device,
computational task etc.

• component that exposes a specific service to another application eg. a micro service or database

• a reusable component that is applicable to multiple application deployments eg. a co-routine or proximity
depdendent service (logger, metrics collector, network helper, private database etc)

• an independently scalable unit that can be replicated to match demand

• the minimum unit required to match a resource profile at scheduling time such as storage, memory, cpu, spe-
cialised device

Above all, design software to scale horizontally through a UNIX process model so that individual components that
have independent scaling characteristics can be replicated independently.

The application interface should be through the standard container run time interface contract:

• inputs come via a configurable Port

• outputs go to a configurable network service

• logging goes to stdout/stderr and syslog and uses JSON to enrich metadata (see Container Standards ‘Logging’)

• metrics are advertised via a standard such as Prometheus Exporters, or emit metrics in a JSON format over TCP
consumable by ETL services such as LogStash

• configuration is passed in using environment variables, and simple configuration files (eg: ini, or key/value
pairs).

• POSIX compliant storage IO is facilitated by bind mounted volumes.

• connections to DBMS, queuing technologies and object storage are managed through configuration.

• applications should have builtin recoverability so that prior state and context is automatically discovered on
restart. This enables the cluster to auto-heal by re-launching workloads on other resources when nodes fail
(critical aspect of a micro-services architecture).

By structuring an application in this fashion, it can scale from the single instance desktop development environment up
to a large parallel deployment in production without needing to have explicit understanding builtin for the plumbing
and wiring of each specific environment because this is handled through external configuration at the Infrastructure
management layer.

Example: Tango Controls

To help illustrate the Cloud Native application architecture concepts, a walk through of a Tango application suite is
used.

A Tango Controller System environment is typically made up of the following:

• Database containing the system state eg: MySQL.

110 Chapter 4. Development practices followed at SKA

containerisation-standards.html#structuring-containerised-applications
containerisation-standards.html#structuring-containerised-applications
containerisation-standards.html#running-containerised-applications
containerisation-standards.html#logging
https://prometheus.io/docs/instrumenting/writing_exporters/
https://en.wikipedia.org/wiki/Extract,_transform,_load
https://www.elastic.co/products/logstash

developer.skatelescope.org Documentation, Release 0.1.0-beta

• DatabaseDS Tango device server.

• One or more Tango devices.

• Optional components - Tango REST interface, Tango logviewer, SysAdmin and debugging tools such as Astor
and Jive.

These components map to the following Kubernetes resources:

• MySQL Database == StatefulSet.

• DatabaseDS == Deployment or StatefulSet.

• Tango REST interface == Deployment.

• Tango Device == bare Pod, or single replica Deployment.

This example does not take into consideration an HA deployment of MySQL, treating MySQL as a single instance
StatefulSet. Using a StatefulSet in this case gives the following guarantees above a Deployment:

• Stable unique network identifiers.

• Stable persistent storage.

• Ordered graceful deployment and scaling.

• Ordered automated rolling updates.

These characteristics are useful for stable service types such as databases and message queues.

DatabaseDS is a stateless and horizontally scalable service in it’s own right (state comes from MySQL). This makes it
a fit for the Deployment (which in turn uses a ReplicaSet) or the StatefulSet. Deployments are a good fit for stateless
components that require high availability through mechanisms such as rolling upgrades.

The Tango Devices are single instance applications that act as a proxy between the ‘real’ hardware being controlled
and the DatabaseDS service that provides each Tango Device with a gateway to the Tango cluster state database
(MySQL). Considering that in most cases, an upgrade to a Device Pod is likely to be a delete and replace, we can use
the simplest case of a bare Pod which will enable us to name each Pod after it’s intended device without the random
suffix generated for Deployments.

Example: MPI jobs

A typical MPI application consists of a head node, and worker nodes with the (run to completion) job being launched
from the head node, which in turn controls the work distribution over the workers.

This can be broken in to:

• a generic component type that covers head node and worker nodes.

• a launcher that triggers the application on the designated head node.

These components map to the following Kubernetes resources:

• Worker node == DaemonSet or StatefulSet.

• Launcher and Head node == Job.

MPI jobs typically only require a single instance per physical compute node, and this is exactly the use case of
DaemonSets where Kubernetes ensures exactly one instance of a Pod is running on each designated node. Using Jobs
enables the launcher and the head node to be combined. Both Job and DaemonSet Pods will most likely need the same
library and tools from MPI, so can be combined into a single container image.

4.2. Definition of Done 111

developer.skatelescope.org Documentation, Release 0.1.0-beta

Linking Components Together

Components of an application suite or even between suites should use DNS for service discovery. This is achieved by
using the Service resource. Services should always be declared before Pods so that the automatic generation of associ-
ated Environment Variables happens in time for the subsequent Pods to discover them. Service names are permanent
and predictable, and are tied to the Namespace that a application suite is deployed in, for example in the namespace
test, the DatabaseDS Tango component can find the MySQL database tangodb using the name tangodb or
tangodb.test which is distinctly different to the instance running in the qa namespace also named tangodb but
addressable by tangodb.qa. This greatly simplifies configuration management for software deployment.

Defining and building cloud native application suites

All Kubernetes resource objects are described through the REST based API. The representations of the API documents
are in either JSON or YAML, however the preference is for YAML as the description language as this tends to be more
human readable. The API representations are declarative, specifying the end desired state. It is up to the Kubernetes
scheduler to make this a reality.

It is important to use generic syntax and Kubernetes resource types. Specialised resource types reduce portability
of resource descriptors and templates, and increase dependency on 3rd party integrations. This could lead to upgrade
paralysis because the SDLC is out of our control. An example of this might be using a non-standard 3rd party Database
Operator for MySQL instead of the official Oracle one.

Metadata

Each resource is described with:

• apiVersion - API version that this document should invoke

• kind - resource type (object) that is to be handled

• metadata - descriptive information including name, labels, annotations, namespace, ownership, references

• spec(ification) - the body of the specification for this resource type denoted by kind

The following is an example of the start of a StatefulSet for the Tango DatabaseDS:

Resource description

apiVersion: apps/v1
kind: StatefulSet
metadata:

name: databaseds-integration-tmc-webui-test
labels:
app.kubernetes.io/name: databaseds-integration-tmc-webui-test
helm.sh/chart: integration-tmc-webui-0.1.0
app.kubernetes.io/instance: test
app.kubernetes.io/managed-by: helm

spec:
...

Namespaces

Even though it is possible to specify the namespace directly in the Metadata, it SHOULD NOT be, as this reduces the
flexibility of any resource definition and templating solution employed such as Helm. The namespace can be specified

112 Chapter 4. Development practices followed at SKA

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/reference/
https://github.com/oracle/mysql-operator

developer.skatelescope.org Documentation, Release 0.1.0-beta

at run time eg: kubectl --namespace test apply -f resource-file.yaml.

Name and Labels

Naming and labelling of all resources associated with a deployment should be consistent. This ensures that deploy-
ments that land in the same namespace can be identified along with all inter-dependencies. This is particulaly useful
when using the kubectl command line tool as label based filtering can be employed to sieve out all related objects.

Labels are entirely flexible and free form, but as a minimum specify:

• the name and app.kubernetes.io/name with the same identifier with sufficient precision that the
same application component deplyed in the same namespace can be distinguished eg: a concatenation of
<application>-<suite>-<release>. name and app.kubernetes.io/name are duplicated because label fil-
ter interaction between resources relies on labels eg: Service exposing Pods of a Deployment.

• the labels of the deployment suite such as the helm.sh/chart for Helm, including the version.

• the app.kubernetes.io/instance (which is release) of the deployment suite.

• app.kubernetes.io/managed-by what tooling is used to manage this deployment - most likely helm.

Optional extras which are also useful for filtering are:

• app.kubernetes.io/version the component version.

• app.kubernetes.io/component the component type (most likely related to the primary container).

• app.kubernetes.io/part-of what kind of application suite this component belongs to.

The recommended core label set are described under Kubernetes common labels.

metadata:
name: databaseds-integration-tmc-webui-test
labels:
app.kubernetes.io/name: databaseds-integration-tmc-webui-test
helm.sh/chart: integration-tmc-webui-0.1.0
app.kubernetes.io/instance: test
app.kubernetes.io/version: "1.0.3"
app.kubernetes.io/component: databaseds
app.kubernetes.io/part-of: tango
app.kubernetes.io/managed-by: helm

Using this labelling scheme enables filtering for all deployment related objects eg: kubectl get all -l helm.
sh/chart=integration-tmc-webui-0.1.0,app.kubernetes.io/instance=test.

kubectl label filtering

$ kubectl get all,configmaps,secrets,pv,pvc -l helm.sh/chart=integration-tmc-webui-0.
→˓1.0,app.kubernetes.io/instance=test
NAME READY STATUS RESTARTS AGE
pod/databaseds-integration-tmc-webui-test-0 1/1 Running 0 55s
pod/rsyslog-integration-tmc-webui-test-0 1/1 Running 0 55s
pod/tangodb-integration-tmc-webui-test-0 1/1 Running 0 55s
pod/tangotest-integration-tmc-webui-test 1/1 Running 0 55s
pod/webjive-integration-tmc-webui-test-0 0/6 Init:0/1 0 55s

NAME TYPE CLUSTER-IP EXTERNAL-IP
→˓ PORT(S) AGE
service/databaseds-integration-tmc-webui-test ClusterIP None <none>
→˓ 10000/TCP 55s

(continues on next page)

4.2. Definition of Done 113

https://kubernetes.io/docs/concepts/overview/working-with-objects/common-labels/#labels

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

service/rsyslog-integration-tmc-webui-test ClusterIP None <none>
→˓ 514/TCP,514/UDP 55s
service/tangodb-integration-tmc-webui-test ClusterIP None <none>
→˓ 3306/TCP 55s
service/webjive-integration-tmc-webui-test ClusterIP 10.97.135.8 <none>
→˓ 80/TCP,5004/TCP,3012/TCP,8080/TCP,27017/TCP 55s

NAME READY AGE
statefulset.apps/databaseds-integration-tmc-webui-test 1/1 55s
statefulset.apps/rsyslog-integration-tmc-webui-test 1/1 55s
statefulset.apps/tangodb-integration-tmc-webui-test 1/1 55s
statefulset.apps/webjive-integration-tmc-webui-test 0/1 55s

NAME CAPACITY ACCESS MODES
→˓RECLAIM POLICY STATUS CLAIM STORAGECLASS
→˓ REASON AGE
persistentvolume/rsyslog-integration-tmc-webui-test 10Gi RWO
→˓Retain Bound default/rsyslog-integration-tmc-webui-test standard
→˓ 56s
persistentvolume/tangodb-integration-tmc-webui-test 1Gi RWO
→˓Retain Bound default/tangodb-integration-tmc-webui-test standard
→˓ 55s
persistentvolume/webjive-integration-tmc-webui-test 1Gi RWO
→˓Retain Bound default/webjive-integration-tmc-webui-test standard
→˓ 55s

NAME STATUS VOLUME
→˓ CAPACITY ACCESS MODES STORAGECLASS AGE
persistentvolumeclaim/rsyslog-integration-tmc-webui-test Bound rsyslog-
→˓integration-tmc-webui-test 10Gi RWO standard 56s
persistentvolumeclaim/tangodb-integration-tmc-webui-test Bound tangodb-
→˓integration-tmc-webui-test 1Gi RWO standard 55s
persistentvolumeclaim/webjive-integration-tmc-webui-test Bound webjive-
→˓integration-tmc-webui-test 1Gi RWO standard 55s

Templating the Application

While it is entirely possible to define all the necessary resources for an application suite to be deployed on Kubernetes
in individual or a single YAML file, this approach is static and quickly reveals it’s limitations in terms of creating
reusable and composable application suites. This is where Helm Charts have been adopted by the Kubernetes com-
munity as the leading templating solution for deployment. Helm provides a mechanism for generically describing an
application suite, separating out configuration, and rolling out deployment releases all done in a declarative ‘configu-
ration as code’ style. All Helm Charts should target a minimum of three environments:

• Minikube - the standalone developer environment.

• CI/CD - the Continuous Integration testing environment which is typically the same benchmark as Minikube.

• Production Cluster - the target production Kubernetes environment.

Minikube should be the default target environment for a Chart, as this will have the largest audience and should be
optimised to work without modification of any configuration if possible.

When designing a Chart it is important to have clear separation of concerns:

• the application - essentially the containers to run.

• configuration - any variables that influence the application run time.

114 Chapter 4. Development practices followed at SKA

https://helm.sh/

developer.skatelescope.org Documentation, Release 0.1.0-beta

• resources - any storage, networking, configuration files, secrets, ACLs.

The general structure of a Chart should follow:

charts/myapp/
Chart.yaml # A YAML file containing information about the chart
LICENSE # OPTIONAL: A plain text file containing the license for

→˓the chart
README.md # OPTIONAL: A human-readable README file
requirements.yaml # OPTIONAL: A YAML file listing dependencies for the chart
values.yaml # The default configuration values for this chart
charts/ # A directory containing any charts upon which this chart

→˓depends.
templates/ # A directory of templates that, when combined with

→˓values,
will generate valid Kubernetes manifest files.

templates/NOTES.txt # OPTIONAL: A plain text file containing short usage notes
templates/tests # A directory of test templates for running with 'helm

→˓test'

All template files in the templates/ directory should be named in a readily identifiable way after the compo-
nent that it contains, and if further clarification is required then it should be suffixed with the Kind of resource
eg: tangodb.yaml contains the StatefulSet for the Tango database, and tangodb-pv.yaml contains the
PersistentVolume declaration for the Tango database. ConfigMaps should be clustered in configmaps.
yaml and Secrets in secrets.yaml. The aim is to make it easy for others to understand the layout of application
suite being deployed.

Helm Best Practices

The Helm community have a well defined set of best practices. The following highlights key aspects of these practices
that will help with achieving consistency and reliability.

• charts should be placed in a charts/ directory within the parent project.

• chart names should be lowercase and hyphenated and must match the directory name eg. charts/my-app.

• name, version, description, home, maintainers and sources must be included.

• version must follow the Semantic Versioning standards.

• the chart must pass the helm lint charts/<chart-name> test.

Example Chart.yaml file:

name: my-app
version: 1.0.0
description: Very important app
keywords:
- magic
- mpi
home: https://www.skatelescope.org/
icon: http://www.skatelescope.org/wp-content/uploads/2016/07/09545_NEW_LOGO_2014.png
sources:
- https://github.com/ska-telescope/my-app
maintainers:
- name: myaccount

email: myacount@skatelescope.org

4.2. Definition of Done 115

https://helm.sh/docs/chart_best_practices/
https://semver.org

developer.skatelescope.org Documentation, Release 0.1.0-beta

Metadata with Helm

All resources should have the following boilerplate metadata to ensure that all resources can be uniquely identified to
the chart, application and release:

...
metadata:
name: <component>-{{ template "my-app.name" . }}-{{ .Release.Name }}
labels:

app.kubernetes.io/name: <component>-{{ template "my-app.name" . }}-{{ .Release.
→˓Name }}

helm.sh/chart: "{{ .Chart.Name }}-{{ .Chart.Version }}"
app.kubernetes.io/instance: "{{ .Release.Name }}"
app.kubernetes.io/managed-by: "{{ .Release.Service }}"

...

Defining resources

The Helm templating language is based on Go template.

All resources go in the templates/ directory with the general rule is one Kubernetes resource per template file.
Files that render resources are suffixed .yaml whilst files that contain expressions and macros only go in files suffixed
.tpl.

Sample resource template for a Service generated by ‘helm create mychart’

apiVersion: v1
kind: Service
metadata:
name: {{ include "mychart.fullname" . }}
labels:

app.kubernetes.io/name: {{ include "mychart.name" . }}
helm.sh/chart: {{ include "mychart.chart" . }}
app.kubernetes.io/instance: {{ .Release.Name }}
app.kubernetes.io/managed-by: {{ .Release.Service }}

spec:
type: {{ .Values.service.type }}
ports:
- port: {{ .Values.service.port }}
targetPort: http
protocol: TCP
name: http

selector:
app.kubernetes.io/name: {{ include "mychart.name" . }}
app.kubernetes.io/instance: {{ .Release.Name }}

Expression or macro template generated by ‘helm create mychart’

{{/* vim: set filetype=mustache: */}}
{{/*
Expand the name of the chart.

*/}}
{{- define "mychart.name" -}}
{{- default .Chart.Name .Values.nameOverride | trunc 63 | trimSuffix "-" -}}
{{- end -}}

(continues on next page)

116 Chapter 4. Development practices followed at SKA

https://helm.sh/docs/chart_template_guide/
https://godoc.org/text/template

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

{{/*
Create a default fully qualified app name.
We truncate at 63 chars because some Kubernetes name fields are limited to this (by
→˓the DNS naming spec).
If release name contains chart name it will be used as a full name.

*/}}
{{- define "mychart.fullname" -}}
{{- if .Values.fullnameOverride -}}
{{- .Values.fullnameOverride | trunc 63 | trimSuffix "-" -}}
{{- else -}}
{{- $name := default .Chart.Name .Values.nameOverride -}}
{{- if contains $name .Release.Name -}}
{{- .Release.Name | trunc 63 | trimSuffix "-" -}}
{{- else -}}
{{- printf "%s-%s" .Release.Name $name | trunc 63 | trimSuffix "-" -}}
{{- end -}}
{{- end -}}
{{- end -}}

{{/*
Create chart name and version as used by the chart label.

*/}}
{{- define "mychart.chart" -}}
{{- printf "%s-%s" .Chart.Name .Chart.Version | replace "+" "_" | trunc 63 |
→˓trimSuffix "-" -}}
{{- end -}}

Tightly coupled resources may go in the same template file where they are logically linked or there is a form of
dependency.

An example of logically linked resources are PersistentVolume and PersistentVolumeClaim definitions. Keeping these
together makes debugging and maintenance easier.

PersistentVolume and PersistentVolumeClaim definitions

kind: PersistentVolume
apiVersion: v1
metadata:

name: tangodb-{{ template "tango-chart-example.name" . }}-{{ .Release.Name }}
namespace: {{ .Release.Namespace }}

labels:
app.kubernetes.io/name: tangodb-{{ template "tango-chart-example.name" . }}
app.kubernetes.io/instance: "{{ .Release.Name }}"
app.kubernetes.io/managed-by: "{{ .Release.Service }}"
helm.sh/chart: "{{ template "tango-chart-example.chart" . }}"

spec:
storageClassName: standard
capacity:

storage: 1Gi
accessModes:

- ReadWriteOnce

(continues on next page)

4.2. Definition of Done 117

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

hostPath:
path: /data/tangodb-{{ template "tango-chart-example.name" . }}/

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

name: tangodb-{{ template "tango-chart-example.name" . }}-{{ .Release.Name }}
namespace: {{ .Release.Namespace }}

labels:
app.kubernetes.io/name: tangodb-{{ template "tango-chart-example.name" . }}
app.kubernetes.io/instance: "{{ .Release.Name }}"
app.kubernetes.io/managed-by: "{{ .Release.Service }}"
helm.sh/chart: "{{ template "tango-chart-example.chart" . }}"

spec:
storageClassName: standard
accessModes:

- ReadWriteOnce
resources:

requests:
storage: 1Gi

volumeName: tangodb-{{ template "tango-chart-example.name" . }}-{{ .Release.Name }
→˓}

An example of dependency is the declaration of a Service before the associated
Pod/Deployment/StatefulSet/DaemonSet. The Pod will get the environment variables set from the Service as
this will be evaluated by the Kubernetes API first as guaranteed by being in the same template file.

Service before the associated Pod/Deployment

apiVersion: v1
kind: Service
metadata:
name: tango-rest-{{ template "tango-chart-example.name" . }}-{{ .Release.Name }}
namespace: {{ .Release.Namespace }}
labels:

app.kubernetes.io/name: tango-rest-{{ template "tango-chart-example.name" . }}
app.kubernetes.io/instance: "{{ .Release.Name }}"
app.kubernetes.io/managed-by: "{{ .Release.Service }}"
helm.sh/chart: "{{ template "tango-chart-example.chart" . }}"

spec:
type: ClusterIP
ports:
- name: rest
port: 80
targetPort: rest
protocol: TCP

selector:
app.kubernetes.io/name: tango-rest-{{ template "tango-chart-example.name" . }}
app.kubernetes.io/instance: "{{ .Release.Name }}"

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

name: tango-rest-{{ template "tango-chart-example.name" . }}-{{ .Release.Name }}
(continues on next page)

118 Chapter 4. Development practices followed at SKA

https://kubernetes.io/docs/concepts/services-networking/service/#environment-variables

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

namespace: {{ .Release.Namespace }}
labels:

app.kubernetes.io/name: tango-rest-{{ template "tango-chart-example.name" . }}
app.kubernetes.io/instance: "{{ .Release.Name }}"
app.kubernetes.io/managed-by: "{{ .Release.Service }}"
helm.sh/chart: "{{ template "tango-chart-example.chart" . }}"

spec:
replicas: {{ .Values.tangorest.replicas }}
template:
metadata:

labels:
app.kubernetes.io/name: tango-rest-{{ template "tango-chart-example.name" . }}
app.kubernetes.io/instance: "{{ .Release.Name }}"
app.kubernetes.io/managed-by: "{{ .Release.Service }}"
helm.sh/chart: "{{ template "tango-chart-example.chart" . }}"

spec:
containers:
- name: tango-rest

image: "{{ .Values.tangorest.image.registry }}/{{ .Values.tangorest.image.
→˓image }}:{{ .Values.tangorest.image.tag }}"

imagePullPolicy: {{ .Values.tangorest.image.pullPolicy }}
command:
- /usr/local/bin/wait-for-it.sh
- databaseds-{{ template "tango-chart-example.name" . }}-{{ .Release.Name }}

→˓:10000
- --timeout=30
- --strict
- --
- /usr/bin/supervisord
- --configuration
- /etc/supervisor/supervisord.conf
env:
- name: TANGO_HOST
value: databaseds-{{ template "tango-chart-example.name" . }}-{{ .Release.

→˓Name }}:10000
ports:
- name: rest

containerPort: 8080
protocol: TCP

restartPolicy: Always
{{- with .Values.nodeSelector }}

nodeSelector:
{{ toYaml . | indent 8 }}
{{- end }}
{{- with .Values.affinity }}

affinity:
{{ toYaml . | indent 8 }}
{{- end }}
{{- with .Values.tolerations }}

tolerations:
{{ toYaml . | indent 8 }}
{{- end }}

Note: It may also be necessary to consider the alphabetic ordering of template files, if there is a declaration de-
pendency wider than the immediate file, for instance when s Service definition and it’s environment variables are
necessary for multiple Deployment/StatefulSet/DaemonSet definitions. In this case, it maybe necessary to use a nu-

4.2. Definition of Done 119

developer.skatelescope.org Documentation, Release 0.1.0-beta

merical file prefix such as 00-service-and-pod.yaml, 01-db-statefulset.yaml . . .

Use comments liberally in the template files to describe the intended purpose of the resource declarations and any
other features of the template markup. # YAML comments get copied through to the rendered template output and are
a valuable help when debugging template issues with helm template charts/chart-name/

Managing configuration

Helm charts and the Go templating engine enable separation of application management concerns along multiple lines:

• resources are broken out into related and named templates.

• Application specific configuration values are placed in ConfigMaps.

• volatile run time configuration values are placed in the values.yaml file, and then templated into
ConfigMaps, container commandline parameters or environment variables as required.

• sensitive configuration is placed in Secrets.

• template content is programable (iterators and operators) and this can be parameterised at template rendering
time.

Variable names for template substitution should observe the following rules:

• Use camel-case or lowercase variable names - never hyphenated.

• Structure parameter values in shallow nested structures to make it easier to pass on the Helm command line eg:
--set tangodb.db.connection.host=localhost is convoluted compared to --set tangodb.
host=localhost.

• Use explicitly typed values eg: enabled: false is not enabled: "false".

• Be careful of how YAML parsers coerce value types - long integers get coerced into scientific notation so if in
doubt use strings and type casting eg: foo: "12345678" and {{ .Values.foo | int }}.

• use comments in the values.yaml liberally to describe the intended purpose of variables.

Config in ConfigMaps

ConfigMaps can be used to populate Pod configuration files, environment variables and command line parameters
where the values are largely stable, and should not be bundled with the container itself. This should include any
(small) data artefacts that could be different (hence configured) between different instances of the running containers.
Even files that already exist inside a given container image can be overwritten by using the volumeMounts example
below.

ConfigMap values in Pods

apiVersion: v1
kind: ConfigMap
metadata:

name: special-config
namespace: default

data:
SPECIAL_LEVEL: very
SPECIAL_TYPE: charming
example.ini: |-
property.1=value-1

(continues on next page)

120 Chapter 4. Development practices followed at SKA

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

property.2=value-2
property.3=value-3

apiVersion: v1
kind: Pod
metadata:
name: dapi-test-pod

spec:
containers:
- name: test-container

image: k8s.gcr.io/busybox
accessing ConfigMap values in the commandline fron env vars
command: ["/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY); cat

→˓/etc/config/example.ini"]
env:

reference the map and key to assign to env var
- name: SPECIAL_LEVEL_KEY
valueFrom:

configMapKeyRef:
name: special-config
key: SPECIAL_LEVEL

- name: SPECIAL_TYPE_KEY
valueFrom:

configMapKeyRef:
name: special-config
key: SPECIAL_TYPE

volumeMounts:
mount a ConfigMap file blob as a configuration file
- name: config-volume

mountPath: /etc/config/example.ini
subPath: example.ini
readOnly: true

volumes:
- name: config-volume

configMap:
Provide the name of the ConfigMap containing the files you want
to add to the container
name: special-config

restartPolicy: Never
check the logs with kubectl logs dapi-test-pod
clean up with kubectl delete pod/dapi-test-pod configmap/special-config

Where configuration objects are large or have a sensitive format, then separate these out from the configmaps.
yaml file, and then include them using the template directive: tpl (.Files.Glob "configs/*").
AsConfig .) where the configs/ directory is relative to the charts/my-chart directory.

ConfigMap file blobs separated

apiVersion: v1
kind: ConfigMap
metadata:
name: config-{{ template "tango-chart-example.name" . }}-{{ .Release.Name }}
labels:

app.kubernetes.io/name: config-{{ template "tango-chart-example.name" . }}-{{ .
→˓Release.Name }}

app.kubernetes.io/instance: "{{ .Release.Name }}"
(continues on next page)

4.2. Definition of Done 121

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

app.kubernetes.io/managed-by: "{{ .Release.Service }}"
helm.sh/chart: "{{ template "tango-chart-example.chart" . }}"

data:
{{ (tpl (.Files.Glob "configs/*").AsConfig .) | indent 2 }}

Secrets

Secrets information is treated in almost exactly the same way as ConfigMaps. While the default configuration
(as at v1.14.x) is for Secrets to be stored as Base64 encoded in the etcd database, it is possible and expected that the
Kubernetes cluster will be configured with encryption at rest (available from v1.13). All account details, passwords,
tokens, keys and certificates should be extracted and managed using Secrets.

As was for ConfigMaps, separate Secrets out into the secrets.yaml template.

Secret values in Pods

apiVersion: v1
kind: Secret
metadata:

name: mysecret
type: Opaque
stringData:

username: myuser
password: mypassword
config.yaml: |-
apiUrl: "https://my.api.com/api/v1"
username: myuser
password: mypassword

apiVersion: v1
kind: Pod
metadata:

name: secret-env-pod
spec:

containers:
- name: mycontainer
image: k8s.gcr.io/busybox
accessing Secret values in the commandline fron env vars
command: ["/bin/sh", "-c", "echo $(SECRET_USERNAME) $(SECRET_PASSWORD); cat /etc/

→˓config/example.yaml"]
env:
- name: SECRET_USERNAME

valueFrom:
secretKeyRef:
name: mysecret
key: username

- name: SECRET_PASSWORD
valueFrom:

secretKeyRef:
name: mysecret
key: password

volumeMounts:
- name: foo

(continues on next page)

122 Chapter 4. Development practices followed at SKA

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

mountPath: "/etc/config"
volumes:
- name: foo
secret:

secretName: mysecret
items:
- key: config.yaml

path: example.yaml
mode: 511

restartPolicy: Never
check the logs with kubectl logs secret-env-pod
clean up with kubectl delete pod/secret-env-pod secret/mysecret

Where sensitive data objects are large or have a sensitive format, then separate these out from the secrets.yaml
file, and then include them using the template directive: tpl (.Files.Glob "secrets/*").AsSecrets .
) where the secrets/ directory is relative to the charts/my-chart directory.

Secret file blobs separated

apiVersion: v1
kind: Secret
metadata:
name: secret-{{ template "tango-chart-example.name" . }}-{{ .Release.Name }}
labels:

app.kubernetes.io/name: secret-{{ template "tango-chart-example.name" . }}-{{ .
→˓Release.Name }}

app.kubernetes.io/instance: "{{ .Release.Name }}"
app.kubernetes.io/managed-by: "{{ .Release.Service }}"
helm.sh/chart: "{{ template "tango-chart-example.chart" . }}"

type: Opaque
data:
{{ (tpl (.Files.Glob "secrets/*").AsSecrets .) | indent 2 }}

Storage

PersistentVolumes and partner PersistentVolumeClaims should be defined by default in a separate tem-
plate. This template should be bracketed with a switch to enable the storage declaration to be turned off (eg: {{ if
.Values.tangodb.createpv }}), which will most likely be dependent on, and optimised for each environ-
ment.

On the PersistentVolume:

• All storage should be treated as ephemeral by setting persistentVolumeReclaimPolicy: Delete.

• Explicitly set volume mode eg: volumeMode: Filesystem so that it is clear whether Filesystem or
Block is being requested.

• Explicitly set the access mode eg: ReadWriteOnce, ReadOnlyMany, or ReadWriteMany so that it
is clear what access rights containers are expected to have.

• always specify the storage class - this should always default to standard eg: storageClassName:
standard given that the default target environment is Minikube.

On the PersistentVolumeClaim:

• Always specify the matching storage class eg: storageClassName: standard, so that it will bind to
the intended PersistentVolume storage class.

4.2. Definition of Done 123

developer.skatelescope.org Documentation, Release 0.1.0-beta

• Where possible, always specify an explicit PersistentVolume with volumeName eg: volumeName:
tangodb-tango-chart-example-test. This will force the PersistentVolumeClaim to bind to
a specific PersistentVolume and storage class, avoiding the loosely binding issues that volumes can have.

Tests

Helm Chart tests live in the templates/tests directory, and are essentially one Pod per file that must be run-to-
completion (i.e. restartPolicy: Never). These Pods are annotated in one of two ways:

• "helm.sh/hook": test-success - Pod is expected to exit with return code 0

• "helm.sh/hook": test-failure - Pod is expected to exit with return code not equal 0

This is a simple solution for test assertions at the Pod scale.

As with any other resource definition, tests should have name and metadata correctly scoping them. End the Pod
name with a string that indicates what the test is suffixed with -test.

Helm tests, must be self contained are should be atomic and non-destructive as the intention is that a chart user can
use the tests to determine that the chart installed correctly. As with the following example, the test is for checking that
Pods can reach the DatabaseDS service. Other tests might be checking services are correctly exposed via Ingress.

Helm Chart test Pod - metadata and annotations on a simple connection test

apiVersion: v1
kind: Pod
metadata:

name: databaseds-{{ template "tango-chart-example.name" . }}-{{ .Release.Name }}-
→˓connection-test
namespace: {{ .Release.Namespace }}
labels:
app.kubernetes.io/name: databaseds-{{ template "tango-chart-example.name" . }}
app.kubernetes.io/instance: "{{ .Release.Name }}"
app.kubernetes.io/managed-by: "{{ .Release.Service }}"
helm.sh/chart: "{{ template "tango-chart-example.chart" . }}"

annotations:
"helm.sh/hook": test-success

spec:
{{- if .Values.pullSecrets }}
imagePullSecrets:
{{- range .Values.pullSecrets }}
- name: {{ . }}

{{- end}}
{{- end }}
containers:
- name: databaseds-{{ template "tango-chart-example.name" . }}-{{ .Release.Name }}-

→˓connection-test
image: "{{ .Values.powersupply.image.registry }}/{{ .Values.powersupply.image.

→˓image }}:{{ .Values.powersupply.image.tag }}"
imagePullPolicy: {{ .Values.powersupply.image.pullPolicy }}
command:

- sh
args:

- -c
- "(retry --max=10 -- tango_admin --ping-device test/power_supply/1) && echo

→˓'test OK'"
env:

(continues on next page)

124 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

- name: TANGO_HOST
value: databaseds-{{ template "tango-chart-example.name" . }}-{{ .Release.Name }

→˓}:10000
restartPolicy: Never

Integrating a chart into the SKAMPI repo

Prerequisites

• Verify that Docker, kubectl, Minikube and Helm are installed and working properly - refer to Incorporate my
project into the integration environment.

• The required docker images have been uploaded to and are available from Nexus, see docker upload instructions

To integrate a helm chart into the SKAMPI repo, follow these steps:

Local steps

• Clone the SKAMPI repo, available here.

• Add a directory in charts with a descriptive name

• Add your helm chart and associated files within that directory

• Check the validity of the chart

– Verify that the chart is formatted correctly

helm lint ./charts/<your_chart_directory>/

– Verify that the templates are rendered correctly and the output is as expected

helm install --dry-run --debug ./charts/<your_chart_directory>/

* For some debugging tips refer to: debugging tips.

– Check that your chart deploys locally (utilising minikube as per our standards) and behaves as expected

make deploy KUBE_NAMESPACE=integration
make deploy KUBE_NAMESPACE=integration HELM_CHART=<your_chart_directory>

• Once functionality has been confirmed, go ahead and commit and push the changes

Gitlab

Once the changes had been pushed it will be built in Gitlab. Find the pipeline builds at https://gitlab.com/ska-telescope/
skampi/pipelines.

If the pipeline completes successfully, the full integration environment will be available at https://integration.
engageska-portugal.pt.

4.2. Definition of Done 125

https://nexus.engageska-portugal.pt/#browse/search/docker
uploading-docker-nexus.html
https://gitlab.com/ska-telescope/skampi
https://github.com/helm/helm/blob/master/docs/chart_template_guide/debugging.md
https://gitlab.com/ska-telescope/skampi/pipelines
https://gitlab.com/ska-telescope/skampi/pipelines
https://integration.engageska-portugal.pt
https://integration.engageska-portugal.pt

developer.skatelescope.org Documentation, Release 0.1.0-beta

Kubernetes primitives

The following focuses on the core Kubernetes primitives - Pod, Service, and Ingress. These provide the core delivery
chain of a networked application to the end consumer.

The Pod

The Pod is the basic deployable application unit in Kubernetes, and provides the primary configurable context of an
application component. Within this construct, all configuration and resources are plugged in to the application.

This is a complete example that demonstrates container patterns, initContainers and life-cycle hooks discussed in the
following sections.

Container patterns and life-cycle hooks

kind: Service
apiVersion: v1
metadata:

name: pod-examples
spec:

type: ClusterIP
selector:
app: pod-examples

ports:
- name: http
protocol: TCP
port: 80
targetPort: http

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

name: pod-examples
labels:
app: pod-examples

spec:
replicas: 1
template:
metadata:

labels:
app: pod-examples

spec:
volumes:
lifecyle containers as hooks share state using volumes
- name: shared-data

emptyDir: {}
- name: the-end

hostPath:
path: /tmp
type: Directory

initContainers:
initContainers can initialise data, and do pre-flight checks
- name: init-container

image: alpine

(continues on next page)

126 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

command: ['sh', '-c', "echo 'initContainer says: hello!' > /pod-data/status.
→˓txt"]

volumeMounts:
- name: shared-data
mountPath: /pod-data

containers:
primary data generator container
- name: main-app-container

image: alpine
command: ["/bin/sh"]
args: ["-c", "while true; do echo 'Main app says: ' `date` >> /pod-data/

→˓status.txt; sleep 5;done"]
lifecycle:
postStart hook is async task called on Pod boot
useful for async container warmup tasks that are not hard dependencies
definitely not guaranteed to run before main container command
postStart:
exec:
command: ["/bin/sh", "-c", "echo 'Hello from the postStart handler' >> /

→˓pod-data/status.txt"]
preStop hook is async task called on Pod termination
useful for initiating termination cleanup tasks
definitely not guaranteed to complete before container termination (sig

→˓KILL)
preStop:
exec:
command: ["/bin/sh", "-c", "echo 'Hello from the preStop handler' >> /

→˓the-end/last.txt"]
volumeMounts:
- name: shared-data
mountPath: /pod-data

- name: the-end
mountPath: /the-end

Sidecar helper that exposes data over http
- name: sidecar-nginx-container

image: nginx
ports:
- name: http
containerPort: 80
protocol: TCP

volumeMounts:
- name: shared-data
mountPath: /usr/share/nginx/html

livenessProbe:
httpGet:
path: /index.html
port: http

readinessProbe:
httpGet:
path: /index.html
port: http

Ambassador pattern used as a proxy or shim to access external inputs
gets date from Google and adds it to input
- name: ambassador-container

(continues on next page)

4.2. Definition of Done 127

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

image: alpine
command: ["/bin/sh"]
args: ["-c", "while true; do echo 'Ambassador says: '`wget -S -q 'https://

→˓google.com/' 2>&1 | grep -i '^ Date:' | head -1 | sed 's/^ [Dd]ate: //g'` > /pod-
→˓data/input.txt; sleep 60; done"]

volumeMounts:
- name: shared-data
mountPath: /pod-data

Adapter pattern used as a proxy or shim to generate/render outputs
fit for external consumption (similar to Sidecar)
reformats input data from sidecar and ambassador ready for output
- name: adapter-container

image: alpine
command: ["/bin/sh"]
args: ["-c", "while true; do cat /pod-data/status.txt | head -3 > /pod-data/

→˓index.html; cat /pod-data/input.txt | head -1 >> /pod-data/index.html; cat /pod-
→˓data/status.txt | tail -1 >> /pod-data/index.html; echo 'All from your friendly
→˓Adapter' >> /pod-data/index.html; sleep 5; done"]

volumeMounts:
- name: shared-data
mountPath: /pod-data

This will produce output that demonstrates each of the containers fulfilling their role:

$ curl http://`kubectl get service/pod-examples -o jsonpath="{.spec.
→˓clusterIP}"`
initContainer says: hello!
Main app says: Thu May 2 03:45:42 UTC 2019
Hello from the postStart handler
Ambassador says: Thu, 02 May 2019 03:45:55 GMT
Main app says: Thu May 2 03:46:12 UTC 2019
All from your friendly Adapter

$ kubectl delete deployment/pod-examples service/pod-examples
deployment.extensions "pod-examples" deleted
service "pod-examples" deleted
piers@wattle:~$ cat /tmp/last.txt
Hello from the preStop handler

Container patterns

The Pod is a cluster of one or more containers that share the same resource namespaces. This enables the Pod cluster
to communicate as though they are on the same host which is ideal for preserving the one-process-per-container ideal,
but be able to deliver orchestrated processes as a single application that can be separately maintained.

All Pod deployments should be designed around having a core or leading container. All other containers in the Pod
provide auxillary or secondary services. There are three main patterns for multi-container Pods:

• Sidecar - extend the primary container functionality eg: adds logging, metrics, health checks (as input to live-
nessProbe/readinessProbe).

• Ambasador - container that acts as an out-bound proxy for the primary container by handling translations to
external services.

• Adapter - container that acts as an in-bound proxy for the primary container aligning interfaces with alternative

128 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

standards.

initContainers

Any serial container action that does not neatly fit into the one-process-per-container pattern, should be placed in an
initContainer. These are typically actions like initialising databases, checking for upgrade processes, executing
migrations. initContainer are executed in order, and if any one of them fails, the Pod will be restarted inline
with the restartPolicy. With this behaviour, it is important to ensure that the initContainer actions are
idempotent, or there will be harmful side effects on restarts.

postStart/preStop

Life-cycle hooks have very few effective usecases as there is no guarantee that a postStart task will run before the
main container command does (this is demonstrated above), and there is no guarantee that a preStop task (which is
only issued when a Pod is terminated - not completed) will complete before the KILL signal is issued to the parent
container after the cluster wide configured grace period (30s).

The value of the lifecycle hooks are generally reserved for:

• postStart - running an asynchronous non-critical task in the parent container that would otherwise slow
down the boot time for the Pod and impact service availability.

• preStop - initiating asynchronous clean up tasks via an external service - essentially an opportunity to send a
quick message out before the Pod is fully terminated.

readinessProbe/livenessProbe

Readiness probes are used by the scheduler to determine whether the container is in a state ready to serve requests.
Liveness probes are used by the scheduler to determine whether the container continues to be in a healthy state for
serving requests. Where possible, livenessProbe and readinessProbe should be specified. This is automat-
ically used to calculate whether a Pod is available and healthy and whether it should be added and load balanced in
a Service. These features can play an important role in the continuity of service when clusters are auto-healed,
workloads are shifted from node to node, or during rolling updates to deployments.

The following shows the registered probes and their status for the sidecar container in the examples above:

$ kubectl describe deployment.apps/pod-examples
...
sidecar-nginx-container:

Image: nginx
Port: 80/TCP
Host Port: 0/TCP
Liveness: http-get http://:http/index.html delay=0s timeout=1s

→˓period=10s #success=1 #failure=3
Readiness: http-get http://:http/index.html delay=0s timeout=1s

→˓period=10s #success=1 #failure=3
Environment: <none>
Mounts:
/usr/share/nginx/html from shared-data (rw)

...

While probes can be a command, it is better to make health checks an http service that is combined with an application
metrics handler so that external applications can use the same feature to do health checking (eg: Prometheus, or
Icinga).

4.2. Definition of Done 129

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#define-a-liveness-command
https://github.com/prometheus/docs/blob/master/content/docs/instrumenting/exposition_formats.md
https://prometheus.io/
https://icinga.com/

developer.skatelescope.org Documentation, Release 0.1.0-beta

Sharing, Networking, Devices, Host Resource Access

Sharing resources is often the bottle neck in High Performance Computing, and where the greatest attention to detail
is required with containerised applications in order to gain acceptable performance and efficency.

Containers within a Pod can share resources with each other directly using shared volumes, network, and memory.
These are the preferred methods because they are cross-platform portable for containers in general, Kubernetes and
OS/hardware.

The following example demonstrates how to share memory as a volume between containers:

Pod containers sharing memory

kind: Service
apiVersion: v1
metadata:

name: pod-sharing-memory-examples
labels:
app: pod-sharing-memory-examples

spec:
type: ClusterIP
selector:
app: pod-sharing-memory-examples

ports:
- name: ncat
protocol: TCP
port: 5678
targetPort: ncat

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

name: pod-sharing-memory-examples
labels:
app: pod-sharing-memory-examples

spec:
replicas: 1
template:
metadata:

labels:
app: pod-sharing-memory-examples

spec:
containers:
Producer - write to shared memory
- name: producer-container

image: python:3.7
command: ["/bin/sh"]
args: ["-c", "python3 /src/mmapexample.py -p; sleep infinity"]
volumeMounts:
- name: src
mountPath: /src/mmapexample.py
subPath: mmapexample.py
readOnly: true

- mountPath: /dev/shm
name: dshm

(continues on next page)

130 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

Consumer - read from shared memory and publish on 5678
- name: consumer-container

image: python:3.7
command: ["/bin/sh"]
mutating container - this is bad practice but we need netcat for this

→˓example
args: ["-c", "apt-get update; apt-get -y install netcat-openbsd; python3 -u /

→˓src/mmapexample.py | nc -l -k -p 5678; sleep infinity"]
ports:
- name: ncat
containerPort: 5678
protocol: TCP

volumeMounts:
- name: src
mountPath: /src/mmapexample.py
subPath: mmapexample.py
readOnly: true

- mountPath: /dev/shm
name: dshm

volumes:
- name: src
configMap:

name: pod-sharing-memory-examples
- name: dshm
emptyDir:
medium: Memory

test with:
$ nc `kubectl get service/pod-sharing-memory-examples -o jsonpath="{.spec.

→˓clusterIP}"` 5678
Producers says: 2019-05-05 19:21:10
Producers says: 2019-05-05 19:21:11
Producers says: 2019-05-05 19:21:12
$ kubectl delete deployment,svc,configmap -l app=pod-sharing-memory-examples
deployment.extensions "pod-sharing-memory-examples" deleted
service "pod-sharing-memory-examples" deleted
configmap "pod-sharing-memory-examples" deleted
debug with: kubectl logs -l app=pod-sharing-memory-examples -c producer-

→˓container

apiVersion: v1
kind: ConfigMap
metadata:

name: pod-sharing-memory-examples
labels:
app: pod-sharing-memory-examples

data:
mmapexample.py: |-
#!/usr/bin/env python3
-*- coding: utf-8 -*-
""" example mmap python client
"""

import datetime
import time

(continues on next page)

4.2. Definition of Done 131

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

import getopt
import os
import os.path
import sys
import logging
from collections import namedtuple
import mmap
import signal

def parse_opts():
""" Parse out the command line options
"""
options = {

'mqueue': "/example_shared_memory_queue",
'debug': False,
'producer': False

}

try:
(opts, _) = getopt.getopt(sys.argv[1:],

'dpm:',
["debug",
"producer"
"mqueue="])

except getopt.GetoptError:
print('mmapexample.py [-d -p -m <message_queue_name>]')
sys.exit(2)

dopts = {}
for (key, value) in opts:

dopts[key] = value
if '-p' in dopts:

options['producer'] = True
if '-m' in dopts:

options['mqueue'] = dopts['-m']
if '-d' in dopts:

options['debug'] = True

container class for options parameters
option = namedtuple('option', options.keys())
return option(**options)

main
def main():

""" Main
"""
options = parse_opts()

setup logging
logging.basicConfig(level=(logging.DEBUG if options.debug

else logging.INFO),
format=('%(asctime)s [%(name)s] ' +

'%(levelname)s: %(message)s'))
logging.info('mqueue: %s mode: %s', options.mqueue,

('Producer' if options.producer else 'Consumer'))
(continues on next page)

132 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

trap the keyboard interrupt
def signal_handler(signal_caught, frame):

""" Catch the keyboard interrupt and gracefully exit
"""
logging.info('You pressed Ctrl+C!: %s/%s', signal_caught, frame)
sys.exit(0)

signal.signal(signal.SIGINT, signal_handler)

mqueue_fd = os.open("/dev/shm/" + options.mqueue,
os.O_RDWR | os.O_SYNC | os.O_CREAT)

last = ""
while True:

try:
if options.producer:

now = datetime.datetime.now()
data = "Producers says: %s\n" % \

(now.strftime("%Y-%m-%d %H:%M:%S"))
logging.debug('sending out to mqueue: %s', data)
os.ftruncate(mqueue_fd, 512)
with mmap.mmap(mqueue_fd, 0) as mqueue:

mqueue.seek(0)
mqueue[0:len(data)] = data.encode('utf-8')
mqueue.flush()

else:
with mmap.mmap(mqueue_fd, 0,

access=mmap.ACCESS_READ) as mqueue:
mqueue.seek(0)
data = mqueue.readline().rstrip().decode('utf-8')
logging.debug('from mqueue: %s', data)
if data == last:

logging.debug('same as last time - skipping')
else:

last = data
sys.stdout.write(data+"\n")
sys.stdout.flush()

except Exception as ex: # pylint: disable=broad-except
logging.debug('error: %s', repr(ex))

time.sleep(1)

logging.info('Finished')
sys.exit(0)

main
if __name__ == "__main__":

main()

The following example demonstrates how to share memory over POSIX IPC between containers:

Pod containers sharing memory over POSIX IPC

4.2. Definition of Done 133

developer.skatelescope.org Documentation, Release 0.1.0-beta

kind: Service
apiVersion: v1
metadata:

name: pod-ipc-sharing-examples
labels:
app: pod-ipc-sharing-examples

spec:
type: ClusterIP
selector:
app: pod-ipc-sharing-examples

ports:
- name: ncat
protocol: TCP
port: 1234
targetPort: ncat

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

name: pod-ipc-sharing-examples
labels:
app: pod-ipc-sharing-examples

spec:
replicas: 1
template:
metadata:

labels:
app: pod-ipc-sharing-examples

spec:
volumes:
- name: shared-data

emptyDir: {}

initContainers:
get and build the ipc shmem tool
- name: builder-container

image: golang:1.11
command: ['sh', '-c', "export GOPATH=/src; go get github.com/ghetzel/shmtool"]
volumeMounts:
- name: shared-data
mountPath: /src

containers:
Producer
- name: producer-container

image: alpine
command: ["/bin/sh"]

args:
- "-c"
- >
apk add -U util-linux;
mkdir /lib64 && ln -s /lib/libc.musl-x86_64.so.1 /lib64/ld-linux-x86-64.so.

→˓2;
ipcmk --shmem 1KiB;

(continues on next page)

134 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

echo "ipcmk again as chmtool cant handle 0 SHMID";
ipcmk --shmem 1KiB; > /pod-data/memaddr.txt;
while true;
do echo 'Main app (pod-ipc-sharing-examples) says: ' `date` | /pod-data/

→˓bin/shmtool open -s 1024 `ipcs -m | cut -d' ' -f 2 | sed '/^$/d' | tail -1`;
sleep 1;

done
volumeMounts:
- name: shared-data
mountPath: /pod-data

Consumer - read from the pipe and publish on 1234
- name: consumer-container

image: alpine
command: ["/bin/sh"]
args:
- "-c"
- >
apk add --update coreutils util-linux;
mkdir /lib64 && ln -s /lib/libc.musl-x86_64.so.1 /lib64/ld-linux-x86-64.so.

→˓2;
sleep 3;
(while true;

do /pod-data/bin/shmtool read `ipcs -m | cut -d' ' -f 2 | sed '/^$/d' |
→˓tail -1`;

sleep 1;
done) | stdbuf -i0 nc -l -k -p 1234

ports:
- name: ncat
containerPort: 1234
protocol: TCP

volumeMounts:
- name: shared-data
mountPath: /pod-data

test with:
$ nc `kubectl get service/pod-ipc-sharing-examples -o jsonpath="{.spec.clusterIP}
→˓"` 1234
Main app (pod-ipc-sharing-examples) says: Tue May 7 20:46:03 UTC 2019
Main app (pod-ipc-sharing-examples) says: Tue May 7 20:46:04 UTC 2019
Main app (pod-ipc-sharing-examples) says: Tue May 7 20:46:05 UTC 2019
$ kubectl delete deployment,svc -l app=pod-ipc-sharing-examples
deployment.extensions "pod-ipc-sharing-examples" deleted
service "pod-ipc-sharing-examples" deleted

The following example demonstrates how to share over a named pipe between containers:

Pod containers sharing over named pipe

kind: Service
apiVersion: v1
metadata:

name: pod-sharing-examples
labels:
app: pod-sharing-examples

spec:

(continues on next page)

4.2. Definition of Done 135

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

type: ClusterIP
selector:
app: pod-sharing-examples

ports:
- name: ncat
protocol: TCP
port: 1234
targetPort: ncat

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

name: pod-sharing-examples
labels:
app: pod-sharing-examples

spec:
replicas: 1
template:
metadata:

labels:
app: pod-sharing-examples

spec:
volumes:
lifecyle containers as hooks share state using volumes
- name: shared-data

emptyDir: {}

initContainers:
Setup the named pipe for inter-container communication
- name: init-container

image: alpine
command: ['sh', '-c', "mkfifo /pod-data/piper"]
volumeMounts:
- name: shared-data
mountPath: /pod-data

containers:
Producer
- name: producer-container

image: alpine
command: ["/bin/sh"]
args: ["-c", "while true; do echo 'Main app (pod-sharing-examples) says: '

→˓`date` >> /pod-data/piper; sleep 1;done"]
volumeMounts:
- name: shared-data
mountPath: /pod-data

Consumer - read from the pipe and publish on 1234
- name: consumer-container

image: alpine
command: ["/bin/sh"]
args: ["-c", "apk add --update coreutils; tail -f /pod-data/piper | stdbuf -

→˓i0 nc -l -k -p 1234"]
ports:
- name: ncat
containerPort: 1234

(continues on next page)

136 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

protocol: TCP
volumeMounts:
- name: shared-data
mountPath: /pod-data

test with:
$ nc `kubectl get service/pod-sharing-examples -o jsonpath="{.spec.clusterIP}"`
→˓1234
Main app says: Thu May 2 20:48:56 UTC 2019
Main app says: Thu May 2 20:49:53 UTC 2019
Main app says: Thu May 2 20:49:56 UTC 2019
$ kubectl delete deployment,svc -l app=pod-sharing-examples
deployment.extensions "pod-sharing-examples" deleted
service "pod-sharing-examples" deleted

The following example demonstrates how to share over the localhost network between containers:

Pod containers sharing over localhost network

kind: Service
apiVersion: v1
metadata:

name: pod-sharing-network-examples
labels:
app: pod-sharing-network-examples

spec:
type: ClusterIP
selector:
app: pod-sharing-network-examples

ports:
- name: ncat
protocol: TCP
port: 5678
targetPort: ncat

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

name: pod-sharing-network-examples
labels:
app: pod-sharing-network-examples

spec:
replicas: 1
template:
metadata:

labels:
app: pod-sharing-network-examples

spec:
containers:
Producer
- name: producer-container

image: alpine
command: ["/bin/sh"]
args: ["-c", "apk add --update coreutils; (while true; do echo 'Main app (pod-

→˓sharing-network-examples) says: ' `date`; sleep 1; done) | stdbuf -i0 nc -lk -p 1234
→˓"] (continues on next page)

4.2. Definition of Done 137

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

Consumer - read from the local port and publish on 5678
- name: consumer-container

image: alpine
command: ["/bin/sh"]
args: ["-c", "apk add --update coreutils; nc localhost 1234 | stdbuf -i0 nc -

→˓l -k -p 5678"]
ports:
- name: ncat
containerPort: 5678
protocol: TCP

test with:
$ nc `kubectl get service/pod-sharing-network-examples -o jsonpath="{.spec.

→˓clusterIP}"` 5678
Main app says: Thu May 2 20:48:56 UTC 2019
Main app says: Thu May 2 20:49:53 UTC 2019
Main app says: Thu May 2 20:49:56 UTC 2019
$ kubectl delete deployment,svc -l app=pod-sharing-network-examples
deployment.extensions "pod-sharing-network-examples" deleted
service "pod-sharing-network-examples" deleted

Performance driven networking requirements are a concern with HPC. Often the solution is to bind an application
directly to a specific host network adapter. Historically, the solution for this in containers has been to escalate the
privileges of the container so that it is running in the host namespace, and this is achieved in in Kubernetes using the
following approach:

...
spec:
containers:

- name: my-privileged-container
securityContext:
privileged: true

...

This SHOULD be avoided at all costs. This pushes the container into the host namespace for processes, network
and storage. A critical side effect of this is that any port that the container consumes can conflict with host services,
and will mean that ONLY a single instance of this container can run on any given host. Outside of these functional
concerns, it is a serious source of security breach as the privileged container has full (root) access to the node including
any applications (and containers) running there.

To date, the only valid exceptions discovered have been:

• Core daemon services running for the Kubernetes and OpenStack control plane that are deployed as containers
but are node level services.

• Storage, Network, or Device Kubernetes plugins that need to deploy OS kernel drivers.

As a first step to resolving a networking issue, the Kubernetes and Platform management team should always be
approached to help resolve architectural issues to avoid this approach. In the event of not being able to reconcile the
requirement, then the following hostNetwork solution should be attempted first:

...
spec:
containers:

- name: my-hostnetwork-container

(continues on next page)

138 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

securityContext:
hostNetwork: true

Use of Services

Service resources should be defined in the same template file as the associated application deployment and or-
dered at the top. This will ensure that service related environment variables will be passed into the deployment at
scheduling time. It is good practice to only have a single Service resource per deployment that covers the port
mapping/exposure for each application port. It is also important to only have one deployment per Service as it will
make debugging considerably harder mapping a Service to more than one application. As part of this, ensure that
the selector definition is specific to the fully qualified deployment including release and version to prevent leakage
across multiple deployment versions. Fully qualify port definitions with name, port, protocol and targetPort
so that the interface is self documenting. Using names for targetPort the same as name is encouraged as this can
give useful hints as to the function of the container interface.

Service resource with fully qualified port description and specific selector

apiVersion: v1
kind: Service
metadata:
name: tango-rest-{{ template "tango-chart-example.name" . }}-{{ .Release.Name }}
namespace: {{ .Release.Namespace }}
labels:

app.kubernetes.io/name: tango-rest-{{ template "tango-chart-example.name" . }}
app.kubernetes.io/instance: "{{ .Release.Name }}"
app.kubernetes.io/managed-by: "{{ .Release.Service }}"
helm.sh/chart: "{{ template "tango-chart-example.chart" . }}"

spec:
type: ClusterIP
ports:
- name: rest
protocol: TCP
port: 80
targetPort: rest

selector:
app.kubernetes.io/name: tango-rest-{{ template "tango-chart-example.name" . }}
app.kubernetes.io/instance: "{{ .Release.Name }}"

type: ClusterIP is the default and should almost always be used and declared. NodePort should only be
used under exceptional circumstances as it will reserve a fixed port on the underlying node using up the limited node
port address range resource.

Only expose ports that are actually needed external to the deployment. This will help reduce clutter and reduce the
surface area for attack on an application.

Use of Ingress

A Helm chart represents an application to be deployed, so it follows that it is best practice to have a single Ingress
resource per chart. This represents the single frontend for an application that exposes it to the outside world (relative
to the Kubernetes cluster). If a chart seemingly requires multiple hostnames and/or has services that want to inhabit
the same port or URI space, then consider splitting this into multiple charts so that the component application can be
published independently.

4.2. Definition of Done 139

developer.skatelescope.org Documentation, Release 0.1.0-beta

It is useful to parameterise the control of SSL/TLS configuration so that this can be opted in to in various deployment
strategies (as below).

One Ingress per chart with TLS parameterised

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: rest-api-{{ template "tango-chart-example.name" . }}-{{ .Release.Name }}
labels:

app.kubernetes.io/name: rest-{{ template "tango-chart-example.name" . }}
app.kubernetes.io/instance: "{{ .Release.Name }}"
app.kubernetes.io/managed-by: "{{ .Release.Service }}"
helm.sh/chart: "{{ template "tango-chart-example.chart" . }}"

annotations:
{{- range $key, $value := .Values.ingress.annotations }}
{{ $key }}: {{ $value | quote }}
{{- end }}

spec:
rules:
- host: {{ .Values.ingress.hostname }}

http:
paths:
- path: /

backend:
serviceName: tango-rest-{{ template "tango-chart-example.name" . }}-{{

→˓.Release.Name }}
servicePort: 80

{{- if .Values.ingress.tls.enabled }}
tls:
- secretName: {{ tpl .Values.ingress.tls.secretname . }}

hosts:
- {{ tpl .Values.ingress.hostname . }}

{{- end -}}

Scheduling and running cloud native application suites

Security

Security covers many things, but this section will focus on RBAC and network Policies.

Roles

Kubernetes will implement role based access control which will be used to control external and internal user access to
scheduling and consuming resources.

While it is possible to create serviceAccounts to modify the privileges for a deployment, this should generally
be avoided so that the access control profile of the deploying user can be inherited at launch time.

Do not create ClusterRole and ClusterRoleBinding resources and/or allocate these to
ServiceAccounts used in a deployment as these have extended system wide access rights. Role and
RoleBinding are scoped to the deployment Namespace so limit the scope for damage.

140 Chapter 4. Development practices followed at SKA

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

developer.skatelescope.org Documentation, Release 0.1.0-beta

Pod Security Policies

Pod Security Policies will affect what can be requested in the securityContext section.

It should be assumed that Kubernetes clusters will run restrictive Pod security policies, so it should be expected that:

• Pods do not need to access resources outside the current Namespace.

• Pods do not run as privileged: true and will not have privilege escalation.

• hostNetwork activation will require discussion with operations.

• hostIPC will be unavailable.

• hostPID will be unavailable.

• Containers should run as a non-root user.

• host ports will be restricted.

• host paths will be restricted (hostPath mounts).

• it maybe required to have read only root filesystem (layer in container).

• Capabilities maybe dropped and a restricted list put in place to determine what can be added.

• it should be expected that the default service account credentials will NOT be mounted into the running
containers by default - applications should rarely need to query the Kubernetes API, so access will be removed
by default.

In general, only system level deployments such as Kubernetes control plane components (eg: adminsion controllers,
device drivers, Operators, etc.) are the only deployments that should have cluster level rights.

Network Policies

Explicit Network Policies are encouraged to restrict unintended access across deployments, and to secure applications
from some forms of intrusion.

The following restricts access to the deployed TangoDB to only the DatabaseDS application.

One Ingress per chart with TLS parameterised

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: tangodb-{{ template "tango-chart-example.name" . }}-{{ .Release.Name }}-
→˓network-policy
spec:

podSelector:
matchLabels:

app.kubernetes.io/name: tangodb-{{ template "tango-chart-example.name" . }}
app.kubernetes.io/instance: "{{ .Release.Name }}"

policyTypes:
- Ingress
- Egress
ingress:
- from:
- podSelector:
enable the DatabaseDS interface

matchLabels:

(continues on next page)

4.2. Definition of Done 141

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://kubernetes.io/docs/concepts/services-networking/network-policies/

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

app.kubernetes.io/name: databaseds-{{ template "tango-chart-example.name" .
→˓}}

app.kubernetes.io/instance: "{{ .Release.Name }}"
ports:
- name: ds

protocol: TCP
port: 10000

egress:
- to:
anywhere in the standard Pod Network address range to all ports
- ipBlock:

cidr: 10.0.0.0/16

Images, Tags, and pullPolicy

Only use images from trusted sources. In most cases this should be only from the official SKA repository, with a
few exceptions such as the core vender supported images for key services such as MySQL. It is anticipated that in
the future the SKA will host mirrors and/or pull-through caches for key external software components, and will then
firewall off access to external repositories that are not explicitly trusted.

As a general rule, stable image tags should be used for images that at least include the Major and Minor version
number of Semantic Versioning eg: mysql:5.27. As curated images come from trusted sources, this ensures that
the deployment process gets a functionally stable starting point that will still accrue bug fixing and security patching
over time. Do NOT use the latest tag as it is likely that this will break your application in future as it gives no way
of guaranteeing feature parity and stability.

In Helm Charts, it is good practice to parameterise the registry, image and tag of each container so that these can
be varied in different environment deployments by changing values. Also parameterise the pullPolicy so that
communication with the registry at container boot time can be easily turned on and off.

...
containers:
- name: tangodb
image: "{{ .Values.tangodb.image.registry }}/{{ .Values.tangodb.image.

→˓image }}:{{ .Values.tangodb.image.tag }}"
imagePullPolicy: {{ .Values.tangodb.image.pullPolicy }}

Resource reservations and constraints

Compute platform level resources encompass:

• Memory.

• CPU.

• Plugin based devices.

• Extended resources - configured node level logical resources.

Resources can be either specified in terms of:

• Limits - the maximum amount of resource a container is allowed to consume before it maybe restarted or evicted.

• Requests - the amount of resource a container requires to be available before it will be scheduled.

Limits and requests are specified at the individual container level:

142 Chapter 4. Development practices followed at SKA

https://nexus.engageska-portugal.pt/
https://hub.docker.com/_/mysql
https://semver.org
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/tasks/configure-pod-container/extended-resource/

developer.skatelescope.org Documentation, Release 0.1.0-beta

...
containers:
- name: tango-device-thing
resources:

requests:
cpu: 4000m # 4 cores
memory: 512M # 0.5GB
skatelescope.org/widget: 3

limits:
cpu: 8000m # 8 cores
memory: 1024M # 1GB

Resource requirements should be explicitly set both in terms of requests and limits (not normally applicable to ex-
tended resources) as this can be used by the scheduler to determine load balancing policy, and to determine when an
application is misbehaving. These parameters should be set as configured values.yaml parameters.

Restarts

Containers should be designed to cleanly crash - the main process should exit on a fatal error (no internal restart).
This then will ensure that the configured livenessProbe and readinessProbe function correctly and where
necessary, remove the affected Pod from Services ensuring that there are no dead service connections.

Logging

The SKA has adopted SKA Log Message Format as the logging standard to be used by all SKA software. This should
be considered a base line standard and will be decorated with additional data by an infrastructure wide integrated
logging solution (eg: ElasticStack). To ensure compliance with this, all containers must log to stdout/stderr
and/or be configured to log to syslog. Connection to syslog should be configurable using standard container
mechanisms such as mounted files (handled by ConfigMaps) or environment variables. This will ensure that any
deployed application can be automatically plugged into the infrastructure wide logging and monitoring solution. A
simple way to achieve this is to use a logging client library that is dynamically configurable for output destination such
as import logging for Python.

Metrics

Each Pod should have an application metrics handler that emits the adopted container standard format. For efficency
purposes this should be amalgamated with the livenessProbe and readinessProbe.

Scheduling

Scheduling in Kubernetes enables the resources of the entire cluster to be allocated using a fine grained model. These
resources can be partitioned according to user policies, namespaces, and quotas. The default scheduler is a compre-
hensive rules processing engine that should be able to satisfy most needs.

The primary mechanism for routing incoming tasks to execution is by having a labelling system throughout the clus-
ter that reflects the distribution profile of workloads and types of resources required, coupled with Node and Pod
affinity/anti-affinity rules. These are applied like a sieve to the available resources that the Scheduler keeps track of to
determine if resources are available and where the next Pod can be placed.

Scheduling on Kubernetes behaves similarly to a force directed graph, in that the tensions between the interdependent
rules form the pressures of the spring bars that influence relative placement across the cluster.

4.2. Definition of Done 143

https://www.elastic.co/products/
https://github.com/prometheus/docs/blob/master/content/docs/instrumenting/exposition_formats.md

developer.skatelescope.org Documentation, Release 0.1.0-beta

When creating scheduling constraints, attempt to keep them as generic as possible. Concentrate on declaring rules
related to the individual Helm chart and the current chart in relation to any dependent charts (subcharts). Avoid coding
in node specific requirements. Often it is more efficient to outsource the rules to the values.yaml file as they are
almost guaranteed to change between environments.

...
{{- with .Values.nodeSelector }}

nodeSelector:
{{ toYaml . | indent 8 }}
{{- end }}
{{- with .Values.affinity }}

affinity:
{{ toYaml . | indent 8 }}
{{- end }}
{{- with .Values.tolerations }}

tolerations:
{{ toYaml . | indent 8 }}
{{- end }}
...

Always remember that the Kubernetes API is declarative and expect that deployments will use the apply semantics
of kubectl, with the scheduler constantly trying to move the system towards the desired state as and when resources
become available as well as in response to failures. This means that scheduling is not guaranteed, so any downstream
depedencies must be able to cope with that (also a tenent of micro-services architecture).

Examples of scheduling control patterns

The below scheduling scenarios are run using the following conditions:

• container replicas launched using a sleep command in busybox, defined in a StatefulSet.

• Specific node.

• Type of node.

• Density - 1 per node, n per node.

• Position next another Pod - specific Pod, or Pod type.

• Soft and hard rules.

• A four node cluster - master and three minions.

• The nodes have been split into two groups: rack01 - k8s-master-0 and k8s-minion-0, and rack02 - k8s-minion-1,
and k8s-minion-2.

• The master node has the labels: node-role.kubernetes.io/headnode, and node-role.kubernetes.io/master.

The aim is to demonstrate how the scheduler works, and how to configure for the common use cases.

obs1 and obs2 - nodeAffinity

Use nodeSelector to force all 3 replicas onto rack: rack01 for obs1-rack01 and rack02 for obs2-rack02:

node select rack01 for obs1-rack01 and rack02 for obs2-rack02

144 Chapter 4. Development practices followed at SKA

https://helm.sh/docs/chart_template_guide/#creating-a-subchart
https://kubernetes.io/docs/concepts/overview/object-management-kubectl/declarative-config/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#apply

developer.skatelescope.org Documentation, Release 0.1.0-beta

apiVersion: apps/v1
kind: StatefulSet
metadata:

name: obs1-rack01
labels:
group: scheduling-examples
app: obs1

spec:
replicas: 3
selector:
matchLabels:

app: obs1
serviceName: obs1
template:
metadata:

labels:
group: scheduling-examples
app: obs1

annotations:
description: node select rack01

spec:
containers:
- image: busybox:1.28.3

name: obs1-rack01
command: ["sleep", "365d"]

nodeSelector:
rack: rack01

apiVersion: apps/v1
kind: StatefulSet
metadata:

name: obs2-rack02
labels:
group: scheduling-examples
app: obs2

spec:
replicas: 3
selector:
matchLabels:

app: obs2
serviceName: obs2
template:
metadata:

labels:
group: scheduling-examples
app: obs2

annotations:
description: node select rack02

spec:
containers:
- image: busybox:1.28.3

name: obs2-rack02
command: ["sleep", "365d"]

nodeSelector:
rack: rack02

4.2. Definition of Done 145

developer.skatelescope.org Documentation, Release 0.1.0-beta

Scenario obs1 - run 3 Pods on hosts allocated to rack01. Only nodes master-0, and minion-0 are used reflecting rack01.

NAME DESC STATUS NODE
obs1-rack01-0 node select rack01 Running k8s-master-0
obs1-rack01-1 node select rack01 Running k8s-minion-0
obs1-rack01-2 node select rack01 Running k8s-master-0

and for Scenario obs2 - run 3 Pods on hosts allocated to rack02. Only minion-1 and minion-2 are used reflecting
rack02.

NAME DESC STATUS NODE
obs2-rack02-0 node select rack02 Running k8s-minion-2
obs2-rack02-1 node select rack02 Running k8s-minion-1
obs2-rack02-2 node select rack02 Running k8s-minion-2

obs3 - nodeAffinity exclussion

Use nodeAffinity operator: NotIn rules to exclude the master node from scheduling:

nodeAffinity NotIn master

apiVersion: apps/v1
kind: StatefulSet
metadata:

name: obs3-node-affinity-not-master
labels:
group: scheduling-examples
app: obs3

spec:
replicas: 4
selector:
matchLabels:

app: obs3
serviceName: obs3
template:
metadata:

labels:
group: scheduling-examples
app: obs3

annotations:
description: nodeAffinity NotIn master

spec:
containers:
- image: busybox:1.28.3

name: obs3-node-affinity-not-master
command: ["sleep", "365d"]

affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: node-role.kubernetes.io/master
operator: NotIn
values:
- ""

146 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

Scenario obs3 - run 4 Pods on any host so long as they are not labelled node-role.kubernetes.io/master. In this case
minion-0 and minion-1 have been selected minion-2 could also have been used.

NAME DESC STATUS NODE
obs3-node-affinity-not-master-0 nodeAffinity NotIn master Running k8s-minion-1
obs3-node-affinity-not-master-1 nodeAffinity NotIn master Running k8s-minion-0
obs3-node-affinity-not-master-2 nodeAffinity NotIn master Running k8s-minion-1
obs3-node-affinity-not-master-3 nodeAffinity NotIn master Running k8s-minion-0

obs4 - nodeAntiAffinity

Use podAffinity (hard requiredDuringSchedulingIgnoredDuringExecution) to position on the same node as obs1-
rack01, and nodeAntiAffinity to (soft preferredDuringSchedulingIgnoredDuringExecution) exclude the node labelled
‘node-role.kubernetes.io/headnode’ from scheduling:

podAffinity require obs1-rack01, nodeAntiAffinity prefer headnode

apiVersion: apps/v1
kind: StatefulSet
metadata:

name: obs4-pod-affinity-obs1-pref-not-headnode
labels:
group: scheduling-examples
app: obs4

spec:
replicas: 5
selector:
matchLabels:

app: obs4
serviceName: obs4
template:
metadata:

labels:
group: scheduling-examples
app: obs4

annotations:
description: podAffinity req obs1, nodeAntiAffinity pref headnode

spec:
containers:
- image: busybox:1.28.3

name: obs4-pod-affinity-obs1-pref-not-headnode
command: ["sleep", "365d"]

affinity:
podAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: app
operator: In
values:
- obs1

topologyKey: kubernetes.io/hostname
nodeAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100

(continues on next page)

4.2. Definition of Done 147

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

preference:
matchExpressions:
- key: node-role.kubernetes.io/headnode
operator: NotIn
values:
- ""

Scenario obs4 - run 5 Pods using required Pod Affinity with obs1 and preferred Node Anti Affinity with headnode
(master label). Pods have been scheduled on minion-0 and master-0 as this is where obs1 is. This is further com-
pounded by the anti affinity rule with headnode where only one replica is on master-0.

NAME DESC
→˓ STATUS NODE
obs4-pod-affinity-obs1-pref-not-headnode-0 podAffinity req obs1, nodeAntiAffinity
→˓pref headnode Running k8s-minion-0
obs4-pod-affinity-obs1-pref-not-headnode-1 podAffinity req obs1, nodeAntiAffinity
→˓pref headnode Running k8s-minion-0
obs4-pod-affinity-obs1-pref-not-headnode-2 podAffinity req obs1, nodeAntiAffinity
→˓pref headnode Running k8s-minion-0
obs4-pod-affinity-obs1-pref-not-headnode-3 podAffinity req obs1, nodeAntiAffinity
→˓pref headnode Running k8s-master-0
obs4-pod-affinity-obs1-pref-not-headnode-4 podAffinity req obs1, nodeAntiAffinity
→˓pref headnode Running k8s-minion-0

obs5 - podAntiAffinity

Use podAntiAffinity (hard requiredDuringSchedulingIgnoredDuringExecution) to ensure only one instance of self per
node (topologyKey: “kubernetes.io/hostname”), and podAffinity to require a position on the same node as obs3:

podAntiAffinity require self and podAffinity require obs3

apiVersion: apps/v1
kind: StatefulSet
metadata:

name: obs5-pod-one-per-node-and-obs3
labels:
group: scheduling-examples
app: obs5

spec:
replicas: 5
selector:
matchLabels:

app: obs5
serviceName: obs5
template:
metadata:

labels:
group: scheduling-examples
app: obs5

annotations:
description: podAntiAffinity req self, podAffinity req obs3

spec:
containers:
- image: busybox:1.28.3

(continues on next page)

148 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

name: obs5-pod-one-per-node-and-obs3
command: ["sleep", "365d"]

affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: app
operator: In
values:
- obs5

topologyKey: "kubernetes.io/hostname"
podAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: app
operator: In
values:
- obs3

topologyKey: "kubernetes.io/hostname"

Scenario obs5 - run 3 Pods using required Pod Anti Affinity with self (force schedule one per node) and require Pod
Affinity with obs3. This has forced scheduling of one per node, and because obs3 is only running on two different
nodes the 3rd replica is in a constant state of Pending. Pod Affinity is described with a topology key that is

obs6 - Taint NoSchedule

kubernetes.io/hostname ie. the node identifier. The topology key sets the scope for implementing the rule, so could be
a node, a group of nodes, an OS or device classificaton etc.

NAME DESC
→˓STATUS NODE
obs5-pod-one-per-node-and-obs3-0 podAntiAffinity req self, podAffinity req obs3
→˓Running k8s-minion-0
obs5-pod-one-per-node-and-obs3-1 podAntiAffinity req self, podAffinity req obs3
→˓Running k8s-minion-1
obs5-pod-one-per-node-and-obs3-2 podAntiAffinity req self, podAffinity req obs3
→˓Pending <none>

First, the master node is tainted to disallow scheduling with kubectl cordon <master node>.

Use nodeSelector to force all 3 replicas onto rack: rack01, but this will fail to schedule as the taint will not
allow it so subsequently forced onto minion-0:

node select rack01, but trapped by Taint NoSchedule

kubectl taint nodes k8s-master-0 key1=value1:NoSchedule, or kubectl cordon k8s-
→˓master-0
apiVersion: apps/v1
kind: StatefulSet
metadata:

name: obs6-rack01-taint
labels:

(continues on next page)

4.2. Definition of Done 149

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

group: scheduling-examples
app: obs6

spec:
replicas: 3
selector:
matchLabels:

app: obs6
serviceName: obs6
template:
metadata:

labels:
group: scheduling-examples
app: obs6

annotations:
description: node select rack01, but trapped by Taint NoSchedule

spec:
containers:
- image: busybox:1.28.3

name: obs6-rack01-taint
command: ["sleep", "365d"]

nodeSelector:
rack: rack01

The resulting schedule is:

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
obs6-rack01-taint-0 1/1 Running 0 32s 192.168.105.180 k8s-minion-0 <none>
obs6-rack01-taint-1 1/1 Running 0 31s 192.168.105.177 k8s-minion-0 <none>
obs6-rack01-taint-2 1/1 Running 0 29s 192.168.105.181 k8s-minion-0 <none>

For obs6, a StatefulSet that has nodeSelector:

nodeSelector:
rack: rack01

The result shows that of the two nodes (ks-master-0, and k8s-minion-0) in rack01, only k8s-minion-0 is available for
these Pods.

obs7 - add tolleration

Repeat obs6 as obs7 but add a tolleration to the NoSchedule taint:

node select rack01, with Tolleration to Taint NoSchedule

apiVersion: apps/v1
kind: StatefulSet
metadata:

name: obs7-rack01-taint-and-tolleration
labels:
group: scheduling-examples
app: obs7

spec:
replicas: 3
selector:

(continues on next page)

150 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

matchLabels:
app: obs7

serviceName: obs7
template:
metadata:

labels:
group: scheduling-examples
app: obs7

annotations:
description: node select rack01, with Tolleration to Taint NoSchedule

spec:
containers:
- image: busybox:1.28.3

name: obs7-rack01-taint-and-tolleration
command: ["sleep", "365d"]

nodeSelector:
rack: rack01

tolerations:
- key: "key1"

operator: "Equal"
value: "value1"
effect: "NoSchedule"

Now with the added a Tolleration to the Taint, we have the following:

NAME READY STATUS RESTARTS AGE IP NODE
→˓NOMINATED NODE
obs7-rack01-taint-and-tolleration-0 1/1 Running 0 33s 192.168.105.184 k8s-
→˓minion-0 <none>
obs7-rack01-taint-and-tolleration-1 1/1 Running 0 32s 192.168.72.27 k8s-
→˓master-0 <none>
obs7-rack01-taint-and-tolleration-2 1/1 Running 0 31s 192.168.105.182 k8s-
→˓minion-0 <none>

For a StatefulSet that has nodeSelector and Tollerations:

nodeSelector:
rack: rack01

tolerations:
- key: "key1"

operator: "Equal"
value: "value1"
effect: "NoSchedule"

The result shows that the two nodes k8s-master-0, and k8s-minion-0 in rack01, are available for these Pods.

4.2.10 Software Package Release Procedure

Versioning Procedure

As part of our goal to align all developmental efforts to one standard, we have documented a procedure of how we
would like all the SKA developers to version their releases and what process to follow in ensuring that they are able to
make use of the existing Gitlab CI/CD pipeline to automate the building of python packages, for now, and have them
published on the SKA pypi registry which is hosted on Nexus.

4.2. Definition of Done 151

developer.skatelescope.org Documentation, Release 0.1.0-beta

Versioning scheme to use

The scheme chosen to be adopted by the SKA developer community is the semantic versioning scheme. More infor-
mation regarding this scheme can be found on the Semver site.

Python Packaging Procedure

How to mark a release

A developer should make use of the git annotated tags to indicate that this current commit is to serve as a release. For
example:

$ git tag -a "1.0.0" -m "Release 1.0.0. This is a patch release that resolves
issue <JIRA issue>."

After that is complete, then the tag needs to be published to the origin:

$ git push origin <tag_name>

Caution: The format of the tag should be N.N.N

Minimum requirements to meet

For proper Python packaging, the following metadata must be present in the repository:

• Package name

• Package version

• Github repo url

• Description of the package

• Classifiers

All of this should be specified in the setup.py module that lives in the root directory.

Additional metadata files should be included in the root directory, that is the:

• README.{md|rst} - A description of the package including installation steps

• CHANGELOG.{md|rst} - A log of release versions and the changes in each version

• LICENSE - A text file with the relevant license

Building packages

The following command will be executed in order to build a wheel for a Python package:

$ python setup.py sdist bdist_wheel

This will form part of the CI pipeline job for the repository so that it can be build automatically. The developer should
add this build step in their .gitlab-ci.yml file, for example:

152 Chapter 4. Development practices followed at SKA

https://semver.org

developer.skatelescope.org Documentation, Release 0.1.0-beta

build_wheel for publication: # Executed on a tag:
stage: build
tags:
- docker-executor

script:
- pip install setuptools
- python setup.py egg_info -b+$CI_COMMIT_SHORT_SHA sdist bdist_wheel # --

→˓universal option to used for pure python packages

This will build a Python wheel that will be published to Nexus. For developmental purposes one can replace the
-b+$CI_COMMIT_SHORT_SHA command line option with -b+dev.$CI_COMMIT_SHORT_SHA to have the
wheel built on each commit.

Publishing packages to Nexus

Provided that the release branch has been tagged precisely as described in the above sections then the CI job will be
triggered by the availability of the tag to publish the Python wheel to the SKA pypi registry on Nexus.

publish to nexus:
stage: publish
tags:
- docker-executor

variables:
TWINE_USERNAME: $TWINE_USERNAME
TWINE_PASSWORD: $TWINE_PASSWORD

script:
check metadata requirements
- scripts/validate-metadata.sh
- pip3 install twine
- twine upload --repository-url $PYPI_REPOSITORY_URL dist/*

only:
variables:

- $CI_COMMIT_MESSAGE =~ /^.+$/ # Confirm tag message exists
- $CI_COMMIT_TAG =~ /^((([0-9]+)\.([0-9]+)\.([0-9]+)(?:-([0-9a-zA-Z-]+(?:\.[0-

→˓9a-zA-Z-]+)*))?)(?:\+([0-9a-zA-Z-]+(?:\.[0-9a-zA-Z-]+)*))?)$/ # Confirm semantic
→˓versioning of tag

Installing a package from Nexus

For developers who want to install a python package from the SKA pypi registry hosted on Nexus, they should edit the
project’s Pipfile to have the following section(s), for example:

[[source]]
url = 'https://nexus.engageska-portugal.pt/repository/pypi/simple'
verify_ssl = true
name = 'nexus'

[packages]
'skaskeleton' = {version='*', index='nexus'}

Helm Chart Packaging, Publishing and Sharing

4.2. Definition of Done 153

developer.skatelescope.org Documentation, Release 0.1.0-beta

Working with a Helm Repository

Working with a Helm chart repository is well-documented on The Official Helm Chart Repository Guide.

Adding (our) repository

Note: Our Helm chart repository URL is https://nexus.engageska-portugal.pt/repository/helm-chart

In order to add the Helm chart repo to your local list of repositories, run

$ helm repo add [REPONAME] https://nexus.engageska-portugal.pt/repository/helm-chart

where [REPONAME] is a name you choose to identify the repo on your local machine. In order to standardise, we
would recommend you use skatelescope.

Search available charts in a repo

To browse through the repo to find the available charts, you can then say (if, for example, you decided to name the
repo skatelescope), to see output similar to this:

$ helm search skatelescope
NAME CHART VERSION APP VERSION DESCRIPTION
skatelescope/sdp-prototype 0.2.1 1.0 helm chart to deploy
→˓the SDP Prototype on Kubernetes
skatelescope/test-app 0.1.0 1.0 A Helm chart for
→˓Kubernetes
skatelescope/webjive 0.1.0 1.0 A Helm chart for
→˓deploying the WebJive on Kubernetes

To install the test-app, you call helm install the-app-i-want-to-test skatelescope/test-app to install it in the default
namespace. Test this with kubectl get pods -n default.

Update the repo

Almost like a git fetch command, you can update your local repositories’ indexes by running

$ helm repo update

Note: this will update ALL your local repositories’ index files.

Package and publish Helm Charts to the SKA Helm Chart Repository

Package a chart

Packaging a chart is relatively trivial. Let’s say you create a chart called my-new-chart, with the following directory
structure:

154 Chapter 4. Development practices followed at SKA

https://v2.helm.sh/docs/developing_charts/#the-chart-repository-guide
https://nexus.engageska-portugal.pt/repository/helm-chart

developer.skatelescope.org Documentation, Release 0.1.0-beta

$ tree
my-new-chart/

Chart.yaml
charts
templates

NOTES.txt
_helpers.tpl
deployment.yaml
ingress.yaml
service.yaml
tests

test-connection.yaml
values.yaml

You can now package it with the simple command helm package my-new-chart and it will create the package
file:

$ helm package my-new-chart
$ tree

my-new-chart-0.1.0.tgz
my-new-chart/

Chart.yaml
...

values.yaml

Now, in order to publish the chart, you can simply run a curl command with an --upload-file flag:

$ curl -v -u $USERNAME:$PASSWORD --upload-file new-helm-package-v-0.1.0.tgz --url
→˓https://nexus.engageska-portugal.pt//repository/helm-chart/

Note: You will of course need credentials ($USERNAME and $PASSWORD) to run the above curl command with,
and this user should have privileges for reading and writing on the Repository. We have a Gitlab Runner already set
up with a user that has the required privileges - see how to do this below.

If you now run helm repo update you (or your colleagues) should see your new application also listed under the
repo:

$ helm search skatelescope
NAME CHART VERSION APP VERSION DESCRIPTION
skatelescope/sdp-prototype 0.2.1 1.0 helm chart to deploy
→˓the SDP Prototype on Kubernetes
skatelescope/test-app 0.1.0 1.0 A Helm chart for
→˓Kubernetes
skatelescope/webjive 0.1.0 1.0 A Helm chart for
→˓deploying the WebJive on Kubernetes
skatelescope/my-new-chart 0.1.0 1.0 A Helm chart for
→˓deploying the WebJive on Kubernetes

Bulk package and publish using Gitlab CI

Read the Helm documentation (note: this link is for Helm v2 because we are still using it) in order to learn how to
publish your application to a Helm repository. This is an example of a branch-specific job in the CI pipeline with
manual input required. See comments below the code block.

4.2. Definition of Done 155

https://v2.helm.sh/docs/developing_charts/#the-chart-repository-guide

developer.skatelescope.org Documentation, Release 0.1.0-beta

1 stages:
2 - helm-publish
3

4 ...
5

6 publish-chart:
7 stage: helm-publish
8 when: manual # the script will require you to specify the name of the chart that

→˓you want to package - CHART_NAME
9 only:

10 - helm-publish
11 tags:
12 - helm-repoman
13 script:
14 - cd charts
15 - if [$CHART_NAME == 'all']; then for d in */; do helm package "$d"; done;

→˓else helm package $CHART_NAME; fi
16 - for f in *.tgz; do curl -v -u $RAW_USER:$RAW_PASS --upload-file $f $RAW_

→˓HOST/repository/helm-chart/$f; rm $f; done

Here are a few comments, referring to the line numbers above:

ln 1: Remember to add the stage at the top of your .gitlab-ci.yml ln 8: Setting when: manual will cause
the pipeline to wait for the user to trigger the job.

When you try to run the blocked job for the first time, Gitlab will ask you to input variables - see next image. You
need to specify CHART_NAME and use the exact name of the chart, for instance my-new-app.

You can either specify the chart name that is to be published, or input all so that every chart in the top-level
charts/ folder is published.

ln 9: Restricting the job to run only on the helm-publish branch is suggested because this job is run manually and
thus will block a pipeline, waiting for manual input, which is not necessarily good for CI, especially if publishing new
charts is not required.

ln 11: The runner’s name is helm-repoman - it’s available for all projects in the SKA group.

4.2.11 Hosting a docker image on the Nexus registry

As part of our goal to align all developmental efforts to one standard, we have documented a procedure of how we
would like all the SKA developers to version tag their docker images and what process to follow in ensuring that they
are able to make use of the existing Gitlab CI/CD pipeline to automate the building of docker images, for now, and
have them published on the SKA docker registry which is hosted on Nexus.

156 Chapter 4. Development practices followed at SKA

https://nexus.engageska-portugal.pt/#browse/search/docker

developer.skatelescope.org Documentation, Release 0.1.0-beta

Tagging the docker image

To explicitly tag a docker image run the following command:

$ docker tag <source_image> nexus.engageska-portugal.pt/<repository_name>/<image_name>
→˓:<tag_name>

This command will create an alias by the name of the <image_name> that refers to the <source_image>.

Note that naming and tagging conventions are outlined in the containerisation standards. And those should
follow the same semantic versioning used for the repository.

Uploading the docker image to NEXUS

Once the docker image has been built and tagged, it can then be uploaded to the Nexus registry by executing the
following command:

$ docker push nexus.engageska-portugal.pt/<repository_name>/<image_name>:<tag_name>

4.2.12 SKA Log Message Format

Logging Levels

The log format should correspond to the default Python logging levels.

Typically, a Python log message consists of two bits of information from the perspective of calling log function in
code:

1. Log level - corresponds to the Python standard logging levels

2. Message - a UTF-8 encoded string

The logging levels used can be any one of the five standard Python logging levels. For other language runtimes, the
appropriate level that corresponds to the RFC5424 standard should be used.

Note: The Syslog RFC is used as a reference format for mapping log levels only. The Log Message Standard does
not conform to RFC5424 and is not an extension of syslog. For reasoning behind this, see Design Motivations section.

Mapping of Logging Levels

The table below maps Python logging levels to that of RFC5424 (syslog).

(This table is inside a block quote because when HTML is viewed in browser,
the table content gets replaced by a list of repositories.)

======== ============= ====================== =====================
Python RFC5424 RFC5424 Numerical Code Your language runtime
======== ============= ====================== =====================
DEBUG Debug 7 ?
INFO Informational 6 ?
WARNING Warning 4 ?
ERROR Error 3 ?

(continues on next page)

4.2. Definition of Done 157

https://tools.ietf.org/html/rfc5424

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

CRITICAL Critical 2 ?
======== ============= ====================== =====================

For guidelines on when to use a particular log level, please refer to the official Python logging HOWTO.

Log Message Standard

All processes that execute inside containers must log to stdout.

In order for log messages to be ingested successfully into the logging system once deployed, the log message should
conform to the following format (in ABNF):

SKA-LOGMSG = VERSION "|" TIMESTAMP "|" SEVERITY "|" [THREAD-ID] "|" [FUNCTION] "|"
→˓[LINE-LOC] "|" [TAGS] "|" MESSAGE LF
VERSION = 1*2DIGIT ;
→˓(compulsory) version of SKA log standard this log message implements - starts at 1
TIMESTAMP = FULL-DATE "T" FULL-TIME ;
→˓(compulsory) ISO8601 compliant timestamp normalised to UTC
THREAD-ID = *32("-" / ALPHA / DIGIT) ; (optional)
→˓thread id, e.g. "MainThread" or "Thread-1"
FUNCTION = *(NAMESPACE ".") *ALPHA ; (optional)
→˓full namespace of function, e.g. package.module.TangoDevice.method
LINE-LOC = FILENAME "#" LINENO *" " ; (optional)
→˓file and line where log was called
SEVERITY = ("DEBUG" / "INFO" / "WARNING" / "ERROR" / "CRITICAL") *" " ;
→˓(compulsory) log level/severity
TAGS = TAG *["," TAG] ; (optional)
→˓comma-separated list of tags e.g. facility:MID,receptor:m043
MESSAGE = *OCTET ; message
→˓content (UTF-8 string) (should we think about constraining length?)
FILENAME = 1*64 (ALPHA / "." / "_" / "-" / DIGIT) ; from 1 up
→˓to 64 characters
LINENO = 1*5DIGIT ; up to 5
→˓digits (hopefully no file has more than 99,999 loc)
TAG = *(ALPHA / "-") ":" *VCHAR ; name-value
→˓pairs
FULL-DATE = 4DIGIT "-" 2DIGIT "-" 2DIGIT ; e.g. 2019-
→˓12-31
FULL-TIME = 2DIGIT ":" 2DIGIT ":" 2DIGIT "." 3*6DIGIT "Z" ; 23:42:50.
→˓523Z = 42 minutes and 50.523 seconds after the 23rd hour in UTC. Minimum subsecond
→˓precision should be 3 decimal points.
OCTET = %d00-255 ; any byte
DIGIT = %d48-57 ; 0 - 9

Examples:

1|2019-12-31T23:12:37.526Z|INFO||testpackage.testmodule.TestDevice.test_fn|test.py
→˓#1|tango-device:my/dev/name| Regular information should be logged like this FYI
1|2019-12-31T23:45:42.328Z|DEBUG||testpackage.testmodule.TestDevice.test_fn|test.py
→˓#150|| x = 67, y = 24
1|2019-12-31T23:49:53.543Z|WARNING||testpackage.testmodule.TestDevice.test_fn|test.py
→˓#16|| z is unspecified, defaulting to 0!
1|2019-12-31T23:50:17.124Z|ERROR||testpackage.testmodule.TestDevice.test_fn|test.py
→˓#165|site:Element| Could not connect to database!
1|2019-12-31T23:51:23.036Z|CRITICAL||testpackage.testmodule.TestDevice.test_fn|test.py
→˓#16|| Invalid operation. Cannot continue.

158 Chapter 4. Development practices followed at SKA

https://docs.python.org/3/howto/logging.html

developer.skatelescope.org Documentation, Release 0.1.0-beta

Versioning

The log standard is versioned so that it can be modified or extended. Theoretically anything after the first “|” delimiter
can be changed as long as you specify a different version number up to 99.

For example, if it’s decided that LINE-LOC is no longer needed as a first class field in the log standard, we can publish
a new version omitting it.

Version 1:

1|2019-12-31T23:49:13.543Z|WARNING||testpackage.testmodule.TestDevice.test_fn|test.py
→˓#16|| z is unspecified, defaulting to 0!

Version 2:

2|2019-12-31T23:49:13.543Z|WARNING||test.py#16|| z is unspecified, defaulting to 0!

Parsing

The format is simple enough and the only fixed points is the choice of delimiter (“|”) and number of first class fields
(8, as of version 1). This allows for two basic parsing strategies.

Procedural

Splitting by delimiter and then refering to the index is a common operation in any programming environment.

Python (str.split)

log_line = "1|2019-12-31T23:50:17.124Z|ERROR||testpackage.testmodule.TestDevice.test_
→˓fn|test.py#165|site:Element| Could not connect to database!"
structured_log = log_line.split('|')
log_level = structured_log[5]

Regex

The following regular expression can match all fields between the “|” delimiters:

[^|]+(?=|[^|]*$) A more specific regex that leverages named capture to extract matches:

^(?<version>\d+)[|](?<timestamp>[0-9TZ\-:.]+)[|](?<level>[\w\s]+)[|](?<thread>[\w-
→˓]*)[|](?<function>[\w\-.]*)[|](?<lineloc>[\w\s.#]*)[|](?<tags>[\w\:,-]*)[|](?
→˓<message>.*)$

For a demonstration see: https://rubular.com/r/e0njVOGCN59mtA

Design Motivations

The design of the log format above is a work in progress and a first attempt to introduce standardised logging prac-
tices. Some preliminary investigations were made to survey the current logging practices employed in different
teams/components (see a report on this, Investigation of Logging Practices).

4.2. Definition of Done 159

https://rubular.com/r/e0njVOGCN59mtA
https://confluence.skatelescope.org/pages/viewpage.action?pageId=74740601

developer.skatelescope.org Documentation, Release 0.1.0-beta

Assumption 1: First-party components to be integrated on a system level will be containerised.

Implication: Containerisation best practices with regards to logging should apply. This means logging to stdout
or console so that the routing and handling of log messages can be handled by the container runtime (dockerd,
containerd) or dynamic infrastructure platform (k8s).

Assumption 2: A log ingestor component will be deployed as part of logging architecture.

Implication: A log ingestor is responsible for:

• fetching log data from a source, e.g. journald, file , socket, etc.

• processing it, e.g. parsing based on standardised format to extract key information and transform to other
formats such as JSON to be sent to a log datastore.

• shipping it to a log datastore (Elasticsearch) or another log ingestor (Logstash)

Syslog (RFC5424)

We question the need for conforming to syslog standard in container level logs that print to stdout. From prior inves-
tigations, the existing log practices in the SKA codebase do not necessarily conform to syslog either, nor is there a
consistent pattern. We used this opportunity to propose a log format the meets the folllowing goals:

As such we believe the most important features of a standard log message are:

1. to prescribe minimum supported bits of useful information, this includes

a. timestamp

b. log level

c. extensible tags - a mechanism to specify arbitrary tags [1]

d. fully qualified name of call context (the function in source code that log comes from) [1]

e. filename where log call is situated [1]

f. line number in file [1]

2. should be easy to parse

3. readability for local development

Log messages that conform to a standard can always be transformed into syslog compliant loglines before being
shipped to a log aggregator.

Time stamps

Timestamps are included as part of the standard log message so that we can troubleshoot a class of issues that might
occur between processes and the ingestion of logs, .e.g. reconcile order of log messages between ingestor and process.

Tags

To avoid upfront assumptions about what identifiers are universally required, we specify a section for adding arbitrary
tags. We can standardise on some tag names later on, e.g. TangoDeviceName:powersupply,Tango

160 Chapter 4. Development practices followed at SKA

developer.skatelescope.org Documentation, Release 0.1.0-beta

Further work

Log Ingestor Transformations

Implementation details of how log transformations ought to work, will be architecture specific but we still need to
understand how to achieve it in the chosen technology (whether fluentd or filebeat+logstash).

This implies deploying a log ingestor close as possible to the target container/process and have it transform log mes-
sages according to the above spec before shipping it to log storage (elasticsearch).

Field size limits

Decide on reasonable size limits for each field, e.g. SEVERITY will always be between 4-8 characters: INFO(4),
CRITICAL(8)

Should MESSAGE have a size limit? What if we want to add an arbitrary data structure inside the MESSAGE such as
a JSON object? Should it support that or be disallowed upfront?

Standard Tags (LogViewer)

A list of tags (identifiers) we want to add to log messages for easy filtering and semantic clarity:

• Tag: deviceName

– Description: Identifier that corresponds to the TANGO device name, a string in the form: “<facil-
ity>/<family>/<device>”.

* facility : The TANGO facility encodes the telescope (LOW/MID) and its sub-system [2] (see [3]),

* family : Family within facility (see [3]),

* device : TANGO device name (see [3]).

– Example: MID-D0125/rx/controller, where

* MID-D0125 : Dish serial number,

* rx : Dish Single Pixel Feed Receiver (SPFRx),

* controller : Dish SPFRx controller.

• Tag: subSystem

– Description: For software that are not TANGO devices, the name of the telescope sub-system [2].

– Example: SDP

[1] Optional, since it won’t apply to all contexts, e.g. third-party applications.

[2] CSP, Dish, INAU, INSA, LFAA, SDP, SaDT, TM.

[3] 000-000000-012, SKA1 TANGO Naming Convention (CS_GUIDELINES Volume2), Rev 01

4.2. Definition of Done 161

developer.skatelescope.org Documentation, Release 0.1.0-beta

162 Chapter 4. Development practices followed at SKA

CHAPTER 5

Development guidelines

5.1 Getting Started Guide

A pocket-guide to documentation on adding a new project, development, containerisation and integration.

• Getting Started

5.2 Fundamental SKA Software & Hardware Description Language
Standards

These standards underpin all SKA software development. The canonical copy is held in eB, but the essential informa-
tion is here:

• Fundamental SKA Software Standards

5.3 Python coding guidelines

A Python skeleton project is created for use within the SKA Telescope. This skeleton purpose is to enforce coding
best practices and bootstrap the initial project setup. Any development should start by forking this skeleton project
and change the appropriate files.

• Python Coding Guidelines

5.4 Javascript coding guidelines

A React based javascript skeleton project is created for use within the SKA Telescope. Similar to the Python skeleton
above its purpose is to enforce coding best practices and bootstrap the initial project setup for browser based javascript
applications.

163

https://ska-aw.bentley.com/SKAProd/Search/QuickLink.aspx?n=SKA-TEL-SKO-0000661&t=3&d=&sc=Global&i=view

developer.skatelescope.org Documentation, Release 0.1.0-beta

• SKA Javascript Coding Guidelines

5.5 VHDL coding guidelines

VHDL coding guidelines are described at:

• VHDL Coding Style Guidelines

5.6 C++ Coding Standards

A CPP skeleton project is created for use within the SKA Telescope. The skeleton purpose is to demonstrate coding
best practices, boostrap initial project set up within the SKA Continuous Integration (CI) Framework.

• C++ Coding Guidelines

5.7 Containerisation Standards

A set of standards, conventions and guidelines for building, integrating and maintaining Container technologies.

• Containerisation Standards

5.8 Container Orchestration Guidelines

A set of standards, conventions and guidelines for deploying application suites on Container Orchestration technolo-
gies.

• Container Orchestration Guidelines

5.9 SKA Software Packaging Procedure

This details a procedure that all SKA developers shall follow to ensure that they make use of the existing CI/CD
pipelines to automate the building of their software packages for release.

• Software Package Release Procedure

5.10 Hosting a docker image on Nexus

This details steps that all SKA developers shall abide to when building and hosting their docker images on the Nexus
registry.

• Hosting a docker image on the Nexus registry

164 Chapter 5. Development guidelines

developer.skatelescope.org Documentation, Release 0.1.0-beta

5.11 Logging guidelines

A standard logging format exists for logging in the evolutionary prototype into an ELK stack logging system designed
for the SKA software.

• SKA Log Message Format

5.11.1 List of projects

The following table is automatically extracted from our github organisation page at [https://gitlab.com/ska-telescope]

Gitlab repository Documentation Description
testgit testdoc test description
testgit testdoc test description

5.11.2 Create a new project

The SKA code repositories are all stored on the SKA Gitlab account, on gitlab.com/ska-telescope. The SKA’s reposi-
tories on Gitlab have to be created by a member of the Systems team. If you need a repository simply go to the Slack
channel #team-system-support and ask for a new repository to be created. Choose the name well (see below). Re-
spositories will be created with public access by default. Other permissions schemes, such as private and IP protected
repositories, are also possible upon request.

You will be given Maintainer privileges on this project. This will make it possible for you to (among other things)
add users to the project and edit their permissions. For more information about permissions on Gitlab, go to https:
//docs.gitlab.com/ee/user/permissions.html.

In early 2020 the creation of repositories by developers or team members on the SKA Gitlab instance may be sup-
ported.

On groups in Gitlab

The SKA Telescope group on Gitlab has two sub-groups, SKA Developers and SKA Reporters.

Groups on Gitlab are like directory structures which inherit permissions, and users can be added to these groups with
certain permissions. All users in the SKA are added to the main group as Guest users.

There are some repositories which are IP protected, that may not belong to one or either of the two subgroups. Users
that need access to these repositories must be added individually - please ask the System team for assistance.

When creating a new repo there is a number of aspects to be considered.

Mono VS Multi repositories

One of the first choices when creating a new project is how to split the code into repositories. In a project such as
SKA there is no strict rule that can be applied, and a degree of judgement is necessary from the developers. Too
many repositories create an integration problem and are subject to difficult dependency management, whereas too few
repositories make it more difficult to concurrently develop and release independent features. Both scenarios can be
approached with the aid of right tooling and processes, but in general a repository should be created for every software
component following this definition:

5.11. Logging guidelines 165

https://gitlab.com/ska-telescope
http://gitlab.com/ska-telescope
https://skasoftware.slack.com/messages/CEMF9HXUZ
https://docs.gitlab.com/ee/user/permissions.html
https://docs.gitlab.com/ee/user/permissions.html

developer.skatelescope.org Documentation, Release 0.1.0-beta

All software and firmware source code handed over to the SKA organisation shall be organised into
source code repositories. A source code repository is a set of files and metadata, organized in a directory
structure. It is expected that source code repositories map to individual applications or modules according
to the following definition: A module is reusable, replaceable with something else that implements the
same API, independently deployable, and encapsulates some coherent set of behaviors and responsibilities
of the system.

—adapted from ‘Continuous Delivery’

Naming a repository

Repository names shall clearly map to a particular element of the SKA software architecture, as described in the SKA
software design documentation. That is to say, someone familiar with the SKA software architecture shuold be able
to identify the content of a repository just by its name.

Names shall be all lowercase, multiple words shall be separated by hyphens.

Repository contents

All software repositories shall host whatever is necessary to download and run the code they contain. This does not
only include code, but also documentation, dependencies and configuration data. Can someone external to the project
point at your repository and have all the means to run your code? A software repository shall contain:

Repository Checklist

• A LICENSE file (see Licensing a project)

• A README.md file containing basic instructions on what the repository contains. And how to install, test and
run the software

• A docs folder containing RST formatted documentation (see Documenting a project)

• All application code and dependencies (e.g. libraries, static content etc. . .)

• Any script used to create database schemas, application reference data etc. . .

• All the environment creation tools and artifacts described in the previous step (e.g. Puppet or Ansible playbooks)

• Any file used to create containers (Dockerfile, docker-compose.yml . . .)

• All supported automated tests and any manual test scripts

• Any script that supports code packaging, deployment, database migration and environment provisioning

• All project artefacts (deployment procedures, release notes etc..)

• All cloud configuration files

• Any other script or configuration information required to create infrastructure that supports multiple services
(e.g. enterprise service buses, database management systems, DNS zoe files, configuration rules for firewalls,
and other networking devices)

– adapted from ‘The DevOps Handbook’

166 Chapter 5. Development guidelines

developer.skatelescope.org Documentation, Release 0.1.0-beta

SKA Skeleton Projects

The SKA Organisation repository contain a number of skeleton projects which are intended to be forked when starting
a new project. The skeleton projects contain all necessary hooks to documentation, test harness, continuous integration,
already configured according to SKA standards.

5.11.3 Documenting a project

Documenting a project is the key to make it usable, understandable and maintainable, making the difference between a
technically excellent software and a successful software. SKA has defined a set of standards and practices that shall be
implemented when developing software documentation. A more comprehensive set of resources can be found online
at:

• A beginner guide to writing documentation

What to document

Based on the documentation provided everyone should be able to:

• understand the problem the project is trying to solve

• understand how the project is implemented

• know exactly what this projects depends on

• download and build the project

• execute the project tests

• run the project

In order to achieve this goal any structure can be used allowing free text as well as code-extracted documentation.

Documenting the Public API

When it comes to software systems, such as services or libraries, it is of paramount importance that the public API
exposed by the software component is clearly captured and documented.

How to document

Documentation on git

Each software repository shall contain its documentation as part of the code included in a git repository. In this way the
documentation will be released with the same cadence as the code and it will always be possible to trace a particular
version of the documentation to a particular version of the code documented.

Free text documentation must be placed in a docs folder in the upper level of the repository structure. Sphinx
generates automatically extracted files under this folder as well, wherever there are docstrings in the code.

Using sphinx

Documentation must be realised using the sphinx package and Restructured Text . SKA provides a predefined sphinx
template for this purpose in the SKA Python skeleton project. Every project shall use the same docs folder as a
starting point for assembling their own documentation.

5.11. Logging guidelines 167

https://www.writethedocs.org/guide/writing/beginners-guide-to-docs/
http://www.sphinx-doc.org
http://docutils.sourceforge.net/rst.html
https://gitlab.com/ska-telescope/ska-skeleton

developer.skatelescope.org Documentation, Release 0.1.0-beta

Sphinx can be used to generate text documents such as this portal, but it also provides capabilities to automatically
extract and parse code documentation, or docstrings. Refer to the Python Coding Guidelines for more information.

Extracting documentation from code

Todo:

• add hello world class with parameters to the SKA Python Skeleton Project

• add code snippet here as an example of additional documentation which is decoupled from code, and describe
the pitfalls of separating documentation from the code.

Integrating into the Developer Portal

The developer portal is hosted on ReadTheDocs. On the List of projects page a list of all the projects that are hosted
on GitLab is available, with badges to show the build status of the project’s documentation. Each badge is also a
hyperlink to the project’s documentation.

Every SKA project’s documentation is hosted on Readthedocs as a subproject of the developer portal, so that
all projects have a common URL for easier search-ability. For example: whereas the developer portal’s URL is
https://developer.skatelescope.org, the ska_python_skeleton project is at https://developer.skatelescope.org/projects/
ska-python-skeleton.

In order to add the project’s documentation as a subproject on Readthedocs, a project must first be imported into
Readthedocs.

Register on ReadTheDocs

Developers working on the SKA are members of the ska-telescope organisation on GitLab. Registering an account
using the OAuth credentials on ReadTheDocs is recommended, because then the integration between the SKA GitLab
and SKA ReadTheDocs services is done automatically. The integrations can also be set up manually later, and is not
difficult.

Sign up / sign in with GitLab account

Log in with OAuth

As of October 2019, most developers are also registered on the SKA GitHub, and some may sign in using the OAuth
credentials provided by GitHub, when signing into GitLab. This will be the preferred route.

Import project to ReadTheDocs

After signing in, one lands on the Dashboard, and the steps for importing a project are pretty self-explanatory from
here.

168 Chapter 5. Development guidelines

https://developer.skatelescope.org
https://developer.skatelescope.org/projects/ska-python-skeleton
https://developer.skatelescope.org/projects/ska-python-skeleton

developer.skatelescope.org Documentation, Release 0.1.0-beta

5.11. Logging guidelines 169

developer.skatelescope.org Documentation, Release 0.1.0-beta

Add project as a sub-project on ReadTheDocs

A sub-project must be added by a user with Maintainer privileges on the main project.

Currently only the System Team members have these permissions. Please ask on the Slack channel #team-system-
support to have your project added.

For more information on how to add a subproject, go to Read The Docs.

5.11.4 Licensing a project

SKA organisation promotes a model of open and transparent collaboration. In this model collaboration is made
possible using permissive licenses, and not by pursuing the ownership of code by the organisation. Copyright will
thus belong to the institutions contributing to source code development for the lifetime of the project, and software
developed for the SKA telescope will be available to the wider community as source code. Redistribution of the SKA
software will always maintain the original copyright information, acknowledging the original software contributor.

License File

Every software repository shall be licensed according to the SPDX standard. Every repository shall contain a LI-
CENSE file in its top directory, indicating the copyright holder and the license used for the software in its full textual
representation.

Licenses

SKA office will automatically accept the BSD 3-clause new LICENSE and any exception to this shall be justified and
agreed with SKA office Software Quality Assurance engineer. A template of the license is presented at the end of this
page. Existing repositories already published with permissive licenses such as Apache 2.0 or MIT licenses will also
be accepted as part of the handover procedure, while new repositories are encouraged to adopt the recommended BSD
license.

Copyright Information

Copyright information shall be included in the license file, clearly stating the year and the institution the copyright
applies to, in the form:

Copyright <years> <institution>

An example of this for the SKA organisation would be:

Copyright 2018 SKA Organisation

A non exhaustive list of possible copyright notices, based on pre construction SKA collaborators, may include one or
more of the following:

Copyright 2018 AIT Aveiro
Copyright 2018 ASTRON
Copyright 2018 ATC
Copyright 2018 CSIRO
Copyright 2018 ICRAR
Copyright 2018 INAF
Copyright 2018 NCRA

(continues on next page)

170 Chapter 5. Development guidelines

https://skasoftware.slack.com/messages/CEMF9HXUZ
https://skasoftware.slack.com/messages/CEMF9HXUZ
https://docs.ReadTheDocs.io/en/stable/subprojects.html

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

Copyright 2018 SARAO
Copyright 2018 University of Malta
Copyright 2018 University of Manchester
Copyright 2018 University of Oxford
...

A single license file can contain multiple copyright notices, indicating the major contributors to the software reposito-
ries. It is not in the scope of the copyright notice to maintain an updated list of single contributors which can always
be extracted from the DVCS server system in a more reliable and maintainable way. Whenever a license assumes
that copyright is explicitly stated as part of the header of every source code file, this can be summarized into a single
centralized COPYRIGHT file in the top directory of the repository, containing all copyright attributions and referred
to by the single header comments in the source code:

Copyright 2018 The Foo Project Developers. See the COPYRIGHT file at the top-level
→˓directory of this distribution.

It will be the duty of single repository administrators to make sure that copyright notices are maintained and updated
according to the institution contributing to the project.

BSD 3-Clause “New” or “Revised” License text template

Copyright <YEAR> <COPYRIGHT HOLDER>

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

5.11. Logging guidelines 171

developer.skatelescope.org Documentation, Release 0.1.0-beta

172 Chapter 5. Development guidelines

CHAPTER 6

Projects

• List of projects

• Create a new project

• Documenting a project

• Licensing a project

173

developer.skatelescope.org Documentation, Release 0.1.0-beta

6.1 AIT cluster

6.1.1 Cluster specs

6.1.2 Access the cluster

The EngageSKA cluster locates at the Datacenter of Institute of Telecommunication (IT) in Aveiro. To have access to
the cluster, it is required to be inside the facilities or have VPN credentials to access the IT network remotely.

6.1.3 Access to the network using VPN

At the moment, VPN credentials are sent individually and is required to send an email to Dzianis Bartashevich (barta-
shevich@av.it.pt) with the knowledge from Marco Bartolini (M.Bartolini@skatelescope.org).

174 Chapter 6. Projects

mailto:bartashevich@av.it.pt
mailto:bartashevich@av.it.pt
mailto:M.Bartolini@skatelescope.org

developer.skatelescope.org Documentation, Release 0.1.0-beta

• Guide on how to connect to the private network using VPN: https://engageska-portugal.pt/theme/files/
vpn-guide.pdf

6.1.4 Access to the OpenStack platform (Virtualization)

The OpenStack platform requires authentication in order to use it.

6.1. AIT cluster 175

https://engageska-portugal.pt/theme/files/vpn-guide.pdf
https://engageska-portugal.pt/theme/files/vpn-guide.pdf

developer.skatelescope.org Documentation, Release 0.1.0-beta

At the moment, OpenStack credentials are sent individually and it is required to send an email to Dzianis Bartashevich
(bartashevich@av.it.pt with the knowledge from Marco Bartolini (M.Bartolini@skatelescope.org). In the next phase,
OpenStack could support GitHub authentication.

To access the OpenStack platform go to http://192.168.93.215/dashboard (require VPN) and login with your creden-
tials.

Virtual machine deployment

• At the sidebar, go to Project -> Compute -> Instances and click on the “Launch Instance” button:

• At this stage a menu will pop-up and will ask to specify virtual machine caracteristics, chose an name for virtual
machine:

• Select the Operating System you want your VM to have:

176 Chapter 6. Projects

mailto:bartashevich@av.it.pt
mailto:M.Bartolini@skatelescope.org
http://192.168.93.215/dashboard

developer.skatelescope.org Documentation, Release 0.1.0-beta

NOTE: Please choose the option “Yes” at “Delete Volume on Instance Delete” so when you decide to delete the
instance the volume will be also deleted and not occupy unnecessary space

6.1. AIT cluster 177

developer.skatelescope.org Documentation, Release 0.1.0-beta

• Select the flavor which you want your VM to have:

178 Chapter 6. Projects

developer.skatelescope.org Documentation, Release 0.1.0-beta

6.1. AIT cluster 179

developer.skatelescope.org Documentation, Release 0.1.0-beta

• Select private network (int-net):

180 Chapter 6. Projects

developer.skatelescope.org Documentation, Release 0.1.0-beta

• Create or use ssh key to enable ssh access to the VM:

6.1. AIT cluster 181

developer.skatelescope.org Documentation, Release 0.1.0-beta

• In the end press on “Launch Instance” button at the bottom. This initiates the virtual machine deployment. It
could take a while:

182 Chapter 6. Projects

developer.skatelescope.org Documentation, Release 0.1.0-beta

• When the Power State become “Running”, the virtual machine has been successfully deployed and is ready to
be used:

• Since the VM is deployed inside private network you will need to associate Floating IP from your network have
the access:

6.1. AIT cluster 183

developer.skatelescope.org Documentation, Release 0.1.0-beta

184 Chapter 6. Projects

developer.skatelescope.org Documentation, Release 0.1.0-beta

• Now using any SSH client connect to the instance through VPN using the Floating IP address

Docker machine deployment

Official docker-machine documentation: https://docs.docker.com/machine/overview/

6.1. AIT cluster 185

https://docs.docker.com/machine/overview/

developer.skatelescope.org Documentation, Release 0.1.0-beta

1. Instalation

Guide: https://docs.docker.com/machine/install-machine/

2. Configuration

In order to use the OpenStack integration you need to export OpenStack Authentication credentials.

For the future use, create an executable file which will export environmental variables automatically. For example you
can call file “openstackrc” and the content of the file be:

VM CONFIG
export OS_SSH_USER=ubuntu
export OS_IMAGE_NAME=Ubuntu1604
export OS_FLAVOR_NAME=m1.medium
export OS_FLOATINGIP_POOL=ext_net
export OS_SECURITY_GROUPS=default
export OS_NETWORK_NAME=int_net

AUTH
export OS_DOMAIN_NAME=default
export OS_USERNAME=<OPENSTACK_USER>
export OS_PASSWORD=<OPENSTACK_PASS>
export OS_TENANT_NAME=geral
export OS_AUTH_URL=http://192.168.93.215:5000/v3

OS_SSH_USER Default ssh user, usually it is ubuntu (if operating system is ubuntu)

OS_IMAGE_NAME OS image to be used during virtual machine deployment

OS_FLAVOR_NAME Virtual machine specification (vCPU, RAM, storage, . . .)

Flavor vCPU Root Disk RAM
m1.tiny 1 0 0.5GB
m1.smaller 1 0 1GB
m1.small 1 10GB 2GB
m1.medium 2 10GB 3GB
m1.large 4 10GB 8GB
m1.xlarge 8 10GB 8GB
ska1.full 46 10GB 450GB

OS_FLOATINGIP_POOL Floating IP external network pool is the “ext_net”

OS_SECURITY_GROUPS Security groups, default is “default”

OS_NETWORK_NAME Private network, default is “int_net”

OS_DOMAIN_NAME OpenStack domain region, default is “default”

OS_USERNAME OpenStack username

OS_PASSWORD OpenStack password

OS_TENANT_NAME OpenStack project name, default is “geral”

OS_AUTH_URL OpenStack Auth URL, default is “http://192.168.93.215:5000/v3”

186 Chapter 6. Projects

https://docs.docker.com/machine/install-machine/
http://192.168.93.215:5000/v3

developer.skatelescope.org Documentation, Release 0.1.0-beta

3. Usage

Complete documentation about docker-machine CLI commands can be found here:
https://docs.docker.com/machine/reference/

3.1 Run the enviromental variable file

$. openstackrc

3.2 Create docker-machine

Create a machine. Requires the –driver flag to indicate which provider (OpenStack) the machine should be created on,
and an argument to indicate the name of the created machine.

$ docker-machine create --driver=openstack MACHINE-NAME

Creating CA: /root/.docker/machine/certs/ca.pem
Creating client certificate: /root/.docker/machine/certs/cert.pem
Running pre-create checks...
Creating machine...
(MACHINE-NAME) Creating machine...
Waiting for machine to be running, this may take a few minutes...
Detecting operating system of created instance...
Waiting for SSH to be available...
Detecting the provisioner...
Provisioning with ubuntu(systemd)...
Installing Docker...
Copying certs to the local machine directory...
Copying certs to the remote machine...
Setting Docker configuration on the remote daemon...
Checking connection to Docker...
Docker is up and running!
To see how to connect your Docker Client to the Docker Engine running on this virtual
→˓machine, run: docker-machine env MACHINE-NAME

In this step docker-machine will create VM inside OpenStack. As soon as the ssh connection to VM is available the
Docker service will be installed.

3.3 Set docker-machine environment

Set environment variables to dictate that docker should run a command against a particular machine.

$ docker-machine env MACHINE-NAME

export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://192.168.93.23:2376"
export DOCKER_CERT_PATH="/root/.docker/machine/machines/MACHINE-NAME"
export DOCKER_MACHINE_NAME="MACHINE-NAME"
Run this command to configure your shell:
eval $(docker-machine env MACHINE-NAME)

6.1. AIT cluster 187

developer.skatelescope.org Documentation, Release 0.1.0-beta

3.4 Configure shell to use your docker-machine

After this, when you execute “docker” command it will be executed remotely

$ eval $(docker-machine env MACHINE-NAME)

Now if you run “docker-machine ls” you see that your machine is active and ready to use.

$ docker-machine ls

NAME ACTIVE DRIVER STATE URL SWARM
→˓DOCKER ERRORS
MACHINE-NAME * openstack Running tcp://192.168.93.23:2376 v18.
→˓09.0

3.5 Use “docker” command to remotely deploy docker containers

$ docker run -d -p 80:80 nginx

Unable to find image 'nginx:latest' locally
latest: Pulling from library/nginx
a5a6f2f73cd8: Pull complete
67da5fbcb7a0: Pull complete
e82455fa5628: Pull complete
Digest: sha256:98b06873ea9c87d5df1bb75b650926cfbcc4c53f675dfabb158830af0b115f99
Status: Downloaded newer image for nginx:latest
889a1ab275ba072980fe4fd3ec58094513cf41330c3698b226c239ba490a24a6

3.6 Remove docker-machine

Remove a machine. This removes the local reference and deletes it on the cloud provider or virtualization management
platform.

$ docker-machine rm MACHINE-NAME (-f if need force)

3.7 Docker-machine IP

Get the IP address of one or more machines

$ docker-machine ip MACHINE-NAME

192.168.93.23

3.8 Docker-machine list

List currently deployed docker-machines

188 Chapter 6. Projects

developer.skatelescope.org Documentation, Release 0.1.0-beta

$ docker-machine ls

NAME ACTIVE DRIVER STATE URL SWARM
→˓DOCKER ERRORS
MACHINE-NAME * openstack Running tcp://192.168.93.23:2376 v18.
→˓09.0

3.9 Docker-machine upgrade

Upgrade a machine to the latest version of Docker. How this upgrade happens depends on the underlying distribution
used on the created instance.

$ docker-machine upgrade MACHINE-NAME

Waiting for SSH to be available...
Detecting the provisioner...
Upgrading docker...
Restarting docker...

3.10 Docker-machine stop

Stops running docker-machine

$ docker-machine stop MACHINE-NAME

Stopping "MACHINE-NAME"...
Machine "MACHINE-NAME" was stopped.

3.11 Docker-machine restart

Restarts docker-machine

$ docker-machine restart MACHINE-NAME

Restarting "MACHINE-NAME"...
Waiting for SSH to be available...
Detecting the provisioner...
Restarted machines may have new IP addresses. You may need to re-run the `docker-
→˓machine env` command.

3.12 Docker-machine start

Starts docker-machine

$ docker-machine start MACHINE-NAME

Starting "MACHINE-NAME"...
Machine "MACHINE-NAME" was started.
Waiting for SSH to be available...

(continues on next page)

6.1. AIT cluster 189

developer.skatelescope.org Documentation, Release 0.1.0-beta

(continued from previous page)

Detecting the provisioner...
Started machines may have new IP addresses. You may need to re-run the `docker-
→˓machine env` command.

3.13 Docker-machine ssh

Log into or run a command on a machine using SSH.

$ docker-machine ssh MACHINE-NAME

Welcome to Ubuntu 16.04.4 LTS (GNU/Linux 4.4.0-116-generic x86_64)

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

153 packages can be updated.
81 updates are security updates.

New release '18.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

ubuntu@MACHINE-NAME:~$

6.1.5 Access to the bare metal

In this stage, this option is very restrictive and only in a well-justified situation is allowed.

190 Chapter 6. Projects

CHAPTER 7

Developer Services

• AIT cluster

7.1 Share your Knowledge

Todo:

• Here is a space where anyone on SKA can share useful links to other docs. Please fill it in

191

developer.skatelescope.org Documentation, Release 0.1.0-beta

192 Chapter 7. Developer Services

CHAPTER 8

Share Your Knowledge

• Share your Knowledge

193

developer.skatelescope.org Documentation, Release 0.1.0-beta

194 Chapter 8. Share Your Knowledge

CHAPTER 9

Commitment to opensource

As defined in SKA software standard, SKA software development is committed to opensource, and an open source
licensing model is always preferred within SKA software development.

Todo:

• Committment to opensource

• Exceptions

9.1 System Design

• Continuous Delivery describes system design and practices necessary to realize continuos delivery.

• Design Patterns: Elements of Reusable Object-Oriented Software describes the most common design patterns
to be found in a software system.

9.2 Programming

• Code complete is a practical introduction to software craftmanship.

• The pragmatic programmer is a good introduction to sound programming practices.

• Clean code introduces quality software practices showcasing different examples and good principles from the
agile world.

• Extreme programming explained can be extremely useful to teams and developers embracing a more agile way
of working for the first time.

195

https://www.continuousdelivery.com/
https://en.wikipedia.org/wiki/Design_Patterns
https://www.amazon.co.uk/Code-Complete-Practical-Handbook-Construction/dp/0735619670/ref=sr_1_1?ie=UTF8&qid=1543264012&sr=8-1&keywords=code+complete+2
https://pragprog.com/book/tpp/the-pragmatic-programmer
https://www.amazon.co.uk/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882/ref=sr_1_2?ie=UTF8&qid=1543264012&sr=8-2
https://www.amazon.co.uk/Extreme-Programming-Explained-Embrace-Change/dp/0321278658

developer.skatelescope.org Documentation, Release 0.1.0-beta

9.3 Programming Languages

9.3.1 Python

• Python in a Nutshell is a comprehensive Python reference to have on your desk while developing any sort of
Python application.

• Python testing with pytest covers pytest framework and related testing best practices in the Python ecosystem.

• Fluent Python is a useful guide to writing effective, idiomatic Python code. This book is recommended reading
for intermediate Python developers and those coming from other languages, showing how Python features and
idioms should be used most effectively.

9.3.2 C++

• Effective C++ contains useful recipes for sound implementations of common C++ patterns.

• Effective STL focuses on the correct usage of the standard teamplate library.

• Effective Modern C++ follows from the previous series, expanding on the transition to C++11 and C++14 and
their new constructs.

9.4 Follow us on social media

• Facebook https://facebook.com/SKAtelescope

• Twitter https://twitter.com/SKA_telescope

• Instagram https://instagram.com/ska_telescope

196 Chapter 9. Commitment to opensource

http://shop.oreilly.com/product/0636920012610.do
https://pragprog.com/book/bopytest/python-testing-with-pytest
http://shop.oreilly.com/product/0636920032519.do
https://www.amazon.co.uk/Effective-Specific-Programs-Professional-Computing/dp/0321334876
https://www.amazon.co.uk/Effective-Specific-Programs-Professional-Computing/dp/0321334876
http://shop.oreilly.com/product/0636920033707.do
https://facebook.com/SKAtelescope
https://twitter.com/SKA_telescope
https://instagram.com/ska_telescope

CHAPTER 10

Follow Us

• Follow us on social media

197

	Scope
	SKA developer community
	Development tools
	Development practices followed at SKA
	Development guidelines
	Projects
	Developer Services
	Share Your Knowledge
	Commitment to opensource
	Follow Us

